Главная
История лаборатории
Наши возможности
Наши достижения
Сотрудники
Новости и события
Публикации
Партнеры
Фториды
Оксиды
Галогениды
Монокристаллы
Порошки
Керамика
Люминофоры
Лазеры
Алмазные композиты
Наноцеллюлозные пленки
Минералогия
Ап-конверсия
Патенты
Публикации
Сбросить все фильтры
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
Способ синтеза фторида бария-лантана
Патент РФ № 2808895, опубл. 05.12.2023.
Thermophysical Characteristics of Single Crystals of Ba1–x–yYbxRyF2+x+y (R = Tm, Ho) Solid Solutions. Inorganic Materials, 2023, Vol. 59, No. 11, pp. 1267–1274.
DOI: 10.1134/S0020168523110080
Optical properties of YSAG:Yb:Er ceramics with Sc3+ cations in the dodecahedral and octahedral positions of the garnet crystal lattice". Modern Electronic Materials. 2023. 9(3). P.133-144.
10.3897/j.moem.9.3.115403
X-ray luminescence of SrF2:Eu nanopowders // Opt. Spectrosc. – 2023. - V. 131(5). - P. 633-638
DOI: 10.61011/EOS.2023.05.56516.58-22
Low temperature singularities of electron density in a two-gap superconductor ZrB12 // Solid State Sciences. – 2023. – V. 142. # 107245.
DOI:10.1016/j.solidstatesciences.2023.107245
Phonon, defect and magnetic contributions to heat capacity of EuxYb1-xB6 solid solutions // Solid State Sciences. – 2023. – V. 142. - # 107233.
DOI:10.1016/j.solidstatesciences.2023.107233
Maltese Cross-type magnetic phase diagrams in Tm1-xYbxB12 antiferromagnets with Yb-valence instability and dynamic charge stripes // J. Magnetism and Magnetic Materials. - 2023. V.574. #170671.
DOI:10.1016/j.jmmm.2023.170671
Surface conductivity in SmB6 // Solid State Sciences. – 2023. - V. 142. - # 107247.
https://doi.org/10.1016/j.solidstatesciences.2023.107247
Growth, structure refinement, thermal expansion and optical spectroscopy of Tm3+-doped MgMoO4 // Optical Materials. – 2023. – V. 138. – C. 113648.
DOI:10.1016/j.optmat.2023.113648
Laser synthesis of ruby and its nanoparticles for photo-conversion of solar spectrum // Laser Phys. Lett. – 2023. – V. 20. - P. 046001 (7pp). https://doi.org/10.1088/1612-202X/acb708
https://doi.org/10.1088/1612-202X/acb708
Phase Diagram of the MgF2–SrF2 System and Interactions of Magnesium and Strontium Fluorides with Other Fluorides / Russian Journal of Inorganic Chemistry, 2023, Vol. 68, No. 12, pp. 1789–1798
https://doi.org/10.1134/S0036023623602325
Single-phase nanopowders of Sr0.85-xBaxEu0.15F2.15: Investigation of structure and X-ray luminescent properties // Ceramics International 49 (2023) 39189-39195
DOI:10.1016/j.ceramint.2023.09.262
Spectral and cathodoluminescence decay characteristics of the Ba1−xCexF2+x (x = 0.3–0.4) solid solution synthesized by precipitation from aqueous solutions and fusion // Photonics. 10 (2023) 1057
DOI:10.3390/photonics10091057
Культура и мышьяк. Химия и жизнь. 2023. № 9. С. 48-49.
ТЕПЛОПРОВОДНОСТЬ МОНОКРИСТАЛЛОВ ТВЕРДЫХ РАСТВОРОВ СИСТЕМЫ CaF2–SrF2–BaF2–YbF3 НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ, 2023, том 59, № 5
https://doi.org/10.31857/S0002337X23050135
Phase Transition in a Tetraaniline/Nanosilicon Composite Film Detected by Impedance Spectroscopy // J. Phys. Chem. C - 2023 – V. 127. – P. 17063−17077
https://doi.org/10.1021/acs.jpcc.3c02466
Positive and negative magnetoresistance and charge transport anisotropy in RB12 (R - Ho, Er, Tm) antiferromagnets with dynamic charge stripes. // Solid State Sciences 142 - 2023 – V. 142 - 107232.
DOI:10.1016/j.solidstatesciences.2023.107232
Optical Properties of Fluorozirconate Glasses Doped with Chromium Ions // Russian Journal of Inorganic Chemistry. – 2023. – V. 68. – No. 8. – P. 1096–1101
Influence of xenon difluoride on the optical properties of fluorozirconate and fluorohafnate glasses. // Mendeleev Commun. ‑ 2023. – V. 33. – P. 525–527
DOI: 10.1016/j.mencom.2023.06.027
Synthesis of Microstructures of Hexagonal Boron Nitride in Gyrotron Discharge in Metal–Dielectric Powder Mixtures. High Energy Chemistry, 2023, Vol. 57, Suppl. 1, pp. S53–S56
DOI: 10.1134/S0018143923070111
КОРРЕЛЯЦИЯ МЕЖДУ ХИМИЧЕСКИМ СОСТАВОМ И ТЕМПЕРАТУРОЙ КЮРИ НИКЕЛЬ-КОБАЛЬТОВОГО ФЕРРИТА. Журнал структурной химии. 2023. Т.64, №9, 117238.
https://jsc.niic.nsc.ru/article/117238
Synthesis of Ca1–x–yYbxEryF2+x+y Upconversion Powders for the Preparation of Optical Ceramics / Journal of Structural Chemistry. 2023. V. 64 (9). P. 1733–1742.
DOI:10.1134/S0022476623090160
Optical properties of non-stoichiometric YAG: Ce luminescent ceramics. Optical materials. (2023). v.143. #114231
DOI:10.2139/ssrn.4431704
Fabrication and Optical Properties of YSAG:Cr Optical Ceramics. Ceramics International. 2023. V.49, Is.19, P. 32127-32135
https://doi.org/10.1016/j.ceramint.2023.07.181
Fabrication and optical properties of garnet ceramics based on Y3-xScxAl5O12 doped with ytterbium and erbium. Dalton Transactions, 2023, 52, p.11285-11296.
DOI:10.1039/D3DT01453C
Оптические и лазерные характеристики Yb: YSAG керамики. Оптика и спектроскопия. 2023. Т.131. вып.5. с.597-603
DOI:10.21883/OS.2023.05.55710.68-22
Оптическая спектроскопия ионов Er3+ в кристаллах BaY1,8Lu0,2F8. Оптика и спектроскопия. 2023. Т.131. вып.5. с.583-588.
DOI:10.21883/OS.2023.05.55708.61-22
Laser Ablation-Generated Crystalline Selenium Nanoparticles Prevent Damage of DNA and Proteins Induced by Reactive Oxygen Species and Protect Mice against Injuries Caused by Radiation-Induced Oxidative Stress // Materials - 2023 - V. 16 - 5164.
https://doi.org/10.3390/ma16145164
Cubic-phase NaYF4:Pr3+,Yb3+ down-conversion phosphors for optical temperature sensing. Solid State Communications 370 (2023) 115235
https://doi.org/10.1016/j.ssc.2023.115235
Infrared to visible up-conversion luminescence of SrF2:Ho particles upon excitation of the 5I7 level of Ho3+ ions. Journal of Luminescence, 2023, v.261. 119942
doi.org/10.1016/j.jlumin.2023.119942.
The ACCESS Collaboration. Array of cryogenic calorimeters to evaluate the spectral shape of forbidden β-decays: the ACCESS project. Eur. Phys. J. Plus (2023) v.138, article number 445
https://doi.org/10.1140/epjp/s13360-023-03946-x
Novel Fluoride Matrix for Dual-Range Optical Sensors and Visualization // Appl. Sci. 2023, 13, 9999.
https://doi.org/10.3390/app13189999
Hall Effect Anisotropy in the Paramagnetic Phase of Ho0.8Lu0.2B12 Induced by Dynamic Charge Stripes // Molecules. – 2023. – V. 28. – P. 676.
DOI:10.3390/molecules28020676
Synthesis of Polycrystalline Diamond Films in Microwave Plasma at Ultrahigh Concentrations of Methane // coatings. - 2023. - V. 13. - P. 751.
https://doi.org/10.3390/coatings13040751
Фазовые диаграммы систем диоксида циркония с оксидами иттрия и скандия // КСМГ. – 2023. – Т.25. - № 2. - С. 257–267.
https://doi.org/10.17308/kcmf.2023.25/11106
Low-temperature phase formation in the BaF2-LaF3 system // Inorganic Materials. 2023. V. 59. № 3. P. 295-305.
DOI:10.1134/S0020168523030019
Optical properties of LiGdF4 single crystal in the terahertz and infrared ranges // Photonics. – 2023. - V. 10. - # 84 (12 pp.).
https://doi.org/10.3390/photonics10010084
Низкотемпературные фазовые равновесия в бинарных системах и получение функциональных материалов // Труды Кольского научного центра РАН. Серия технические науки. - 2023. - Т. 14. - № 4. - С. 125-128.
https://doi.org/10.37614/2949-1215.2023.14.4.021
Люминесцентные свойства индивидуальных центров “кремний-вакансия” в CVD наноалмазах, выращенных на различных подложках. Оптика и спектроскопия. 2023. Т.131. вып.2. с.233-237.
DOI:10.21883/OS.2023.02.55012.21-23
Ап-конверсионная люминесценция твердых растворов CaF2-SrF2-HoF3 при возбуждении на уровень 5I7 ионов Ho3+. Оптика и спектроскопия. 2023, т.131, вып.3, стр.346-353
DOI: 10.21883/OS.2023.03.55384.4085-22
Influence of accidental impurities on the spectroscopic and luminescent properties of ZnWO4 crystal. Materials 2023, 16, 2611.эо
https://doi.org/10.3390/ma16072611
Features of Ca1-xYxF2+x solid solution heat capacity behavior: diffuse phase transition / Nanosystems: Phys. Chem. Math., 2023, 14 (2), 279–285
DOI:10.17586/2220-8054-2023-14-2-279-285
Thermal Stability of LiRF4 (R = Gd, Tb) Compaunds. Cryst. Res. Tech. 2023. 2200251
DOI:10.1002/crat.202200251
Comparison of quantum yield of upconversion nanocrystals determined by absolute and relative methods. Advanced Photonics Research. 2023, 4, 2200187.
https://doi.org/10.1002/adpr.202200187