Публикации

Сбросить все фильтры
  1. Achieving high NIR-to-NIR conversion efficiency by optimization of Tm3+ content in Na(Gd,Yb)F4: Tm upconversion luminophores, Laser Physics Letters 2020. 17 125701
    doi.org/10.1088/1612-202X/abbede.
  2. Temperature sensing in the short-wave infrared spectral region using core-shell NaGdF4:Yb3+,Ho3+,Er3+@NaYF4 nanothermometers. Nanomaterials 2020, 10, 1992
    https://doi.org/10.3390/nano10101992
  3. Hydrophobic up-conversion carboxylated nanocellulose/fluoride phosphor composite films modified with alkyl ketene dimer. Carbohydrate polymers. Carbohydrate Polymers 250 (2020) 116866
    doi.org/10.1016/j.carbpol.2020.116866
  4. UV to IR down-conversion luminescence in novel Ba4Y3F17:Yb:Ce solar spectrum sensitizer for silicon solar cells Optical Materials, 2020 v.108 p.110185.
    https://doi.org/10.1016/j.optmat.2020.110185
  5. The Study of the Luminescence of Solid Solutions Based on Yttrium Fluoride Doped with Ytterbium and Europium for Photonics Condensed Matter and Interphases 2020, 22(2), 225–231
    https://doi.org/10.17308/kcmf.2020.22/2834
  6. Near infrared down-conversion luminescence of Ba4Y3F17:Yb3+:Eu3+ nanoparticles under ultraviolet excitation. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS. 2020. 11 (3), P. 316–323
    DOI:10.17586/2220-8054-2020-11-3-316-323
  7. Determining the Photophysical Parameters of NaGdF4:Eu Solid Solutions in Suspensions Using the Judd–Ofelt Theory JETP Letters, 2020, Vol. 111, No. 9, pp. 525–531.
    DOI:10.1134/S0021364020090064
  8. Thermophysical Properties of Single Crystals of CaF2–SrF2–RF3 (R = Ho, Pr) Fluorite Solid Solutions Inorganic Materials, 2020, Vol. 56, No. 9, pp. 975–981.
    DOI:10.1134/S0020168520090113
  9. Study of Yb3+ Optical Centers in Fluoride Solid Solution Crystals CaF2–SrF2–YbF3. OPTICS AND SPECTROSCOPY (2020) Vol.128 No.5 p.600-604
    DOI:10.1134/S0030400X20050185
  10. Simultaneous measurement of the emission quantum yield and local temperature: The illustrative example of SrF2:Yb3+/Er3+ single crystals / European Journal of Inorganic Chemistry. 2020. v.2020, is.17. 1555–1561
    https://doi.org/10.1002/ejic.202000381
  11. Optimization of upconversion luminescence excitation mode for deeper in vivo bioimaging without contrast loss or overheating // Methods Appl. Fluoresc. 8 (2020) 025006
    doi.org/10.1088/2050-6120/ab7782
  12. Upconversion properties of SrF2:Yb3+,Er3+ single crystals // J. Mater. Chem. C, 2020, 8, 4093-4101.
    DOI:10.1039/C9TC06591A
  13. Luminescent thermometry based on Ba4Y3F17:Pr3+ and Ba4Y3F17:Pr3+,Yb3+ nanoparticles // Ceramics International. 46 (2020) 11658–11666 https://doi.org/10.1016/j.ceramint.2020.01.19
    https://doi.org/10.1016/j.ceramint.2020.01.196
  14. Diamond-rare earth composites with embedded NaGdF4: Eu nanoparticles as robust photo- and X-ray luminescent materials for photonics // ACS Appl. Nano Mater. 2020, 3, 1324-1331
    doi.org/10.1021/acsanm.9b02175
  15. Synthesis of NaYF4:Yb, Er up-conversion luminophore from nitrate flux. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2020, 11 (4), P. 417–423
    DOI:10.17586/2220-8054-2020-11-4-417-423
  16. Synthesis of calcium and strontium fluorides using Li2SO4–Na2SO4 eutectic melts. Russian Journal of Inorganic Chemistry. 2020. V. 65. I 6. P. 834-838. 
    DOI:10.1134/S0036023620060169
  17. Synthesis of Upconversion Luminophores Based on Calcium Fluoride. Condensed Matter and Interphases, 2020, 22(1), 3–10
    http://doi.org/10.17308/kcmf.2020.22/2524