Главная
История лаборатории
Наши возможности
Наши достижения
Сотрудники
Новости и события
Публикации
Партнеры
Фториды
Оксиды
Галогениды
Монокристаллы
Порошки
Керамика
Люминофоры
Лазеры
Алмазные композиты
Наноцеллюлозные пленки
Минералогия
Ап-конверсия
Патенты
Публикации
Сбросить все фильтры
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
Achieving high NIR-to-NIR conversion efficiency by optimization of Tm3+ content in Na(Gd,Yb)F4: Tm upconversion luminophores, Laser Physics Letters 2020. 17 125701
doi.org/10.1088/1612-202X/abbede.
Temperature sensing in the short-wave infrared spectral region using core-shell NaGdF4:Yb3+,Ho3+,Er3+@NaYF4 nanothermometers. Nanomaterials 2020, 10, 1992
https://doi.org/10.3390/nano10101992
Monoclinic zinc monotungstate Yb3+,Li+:ZnWO4: Part I. Czochralski growth, structure refinement and Raman spectra. Journal of Luminescence. (2020). 228. 117601
DOI:10.1016/j.jlumin.2020.117601
UV to IR down-conversion luminescence in novel Ba4Y3F17:Yb:Ce solar spectrum sensitizer for silicon solar cells Optical Materials, 2020 v.108 p.110185.
https://doi.org/10.1016/j.optmat.2020.110185
The Study of the Luminescence of Solid Solutions Based on Yttrium Fluoride Doped with Ytterbium and Europium for Photonics Condensed Matter and Interphases 2020, 22(2), 225–231
https://doi.org/10.17308/kcmf.2020.22/2834
Near infrared down-conversion luminescence of Ba4Y3F17:Yb3+:Eu3+ nanoparticles under ultraviolet excitation. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS. 2020. 11 (3), P. 316–323
DOI:10.17586/2220-8054-2020-11-3-316-323
Study of Yb3+ Optical Centers in Fluoride Solid Solution Crystals CaF2–SrF2–YbF3. OPTICS AND SPECTROSCOPY (2020) Vol.128 No.5 p.600-604
DOI:10.1134/S0030400X20050185
Simultaneous measurement of the emission quantum yield and local temperature: The illustrative example of SrF2:Yb3+/Er3+ single crystals / European Journal of Inorganic Chemistry. 2020. v.2020, is.17. 1555–1561
https://doi.org/10.1002/ejic.202000381
Optimization of upconversion luminescence excitation mode for deeper in vivo bioimaging without contrast loss or overheating // Methods Appl. Fluoresc. 8 (2020) 025006
doi.org/10.1088/2050-6120/ab7782
Upconversion properties of SrF2:Yb3+,Er3+ single crystals // J. Mater. Chem. C, 2020, 8, 4093-4101.
DOI:10.1039/C9TC06591A
Luminescent thermometry based on Ba4Y3F17:Pr3+ and Ba4Y3F17:Pr3+,Yb3+ nanoparticles // Ceramics International. 46 (2020) 11658–11666 https://doi.org/10.1016/j.ceramint.2020.01.19
https://doi.org/10.1016/j.ceramint.2020.01.196
Diamond-rare earth composites with embedded NaGdF4: Eu nanoparticles as robust photo- and X-ray luminescent materials for photonics // ACS Appl. Nano Mater. 2020, 3, 1324-1331
doi.org/10.1021/acsanm.9b02175
Algorithm for calculation of up-conversion luminophores mixtures chromaticity coordinates // J. Fluor. Chem. 237 (2020) 109607
https://doi.org/10.1016/j.jfluchem.2020.109607
Synthesis of NaYF4:Yb, Er up-conversion luminophore from nitrate flux. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2020, 11 (4), P. 417–423
DOI:10.17586/2220-8054-2020-11-4-417-423
Comment on the paper “Thermodynamic evaluation and optimization of the (NaNO3 + KNO3 + Na2SO + K2SO4) system” by Ch. Robelin, P. Chartrand, A.D. Pelton, published in J. Chem. Therm. 83 (2015) 12-26. The Journal of Chemical Thermodynamics. – 2020. – V. 149
DOI:10.1016/j.jct.2020.106178
Synthesis of Upconversion Luminophores Based on Calcium Fluoride. Condensed Matter and Interphases, 2020, 22(1), 3–10
http://doi.org/10.17308/kcmf.2020.22/2524