Главная
История лаборатории
Наши возможности
Наши достижения
Сотрудники
Новости и события
Публикации
Партнеры
Фториды
Оксиды
Галогениды
Монокристаллы
Порошки
Керамика
Люминофоры
Лазеры
Алмазные композиты
Наноцеллюлозные пленки
Минералогия
Ап-конверсия
Патенты
Публикации
Сбросить все фильтры
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
Influence of MgO and CaO sintering additives on thermophysical, luminescent and optical properties of LuAG:Yb3+ laser ceramics. Optical Materials. 2024.
https://doi.org/10.1016/j.optmat.2024.116353.
Fabrication and characterization of LuAG: Er ceramics with high optical transmission. Journal of the European Ceramic Society 45 (2025) 117033
https://doi.org/10.1016/j.jeurceramsoc.2024.117033
"Temperature dependence of lasing properties of 8.3(3) at.% Yb:YSAG ceramics," 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russian Federation, 2024, pp. 43-43
doi: 10.1109/ICLO59702.2024.10624196
Comparison of the thermophysical and optical properties of ceramics based on YSAG: Yb,Er solid solutions with different forms of crystal lattice disorder. Ceramics International. 2024.
https://doi.org/10.1016/j.ceramint.2024.06.296
Influence of Yb3+ content on the optical and thermophysical properties of YSAG:Yb:Er solid solutions. Journal of the American Ceramic Society. 2024; 1–13.
http://dx.doi.org/10.1111/jace.20077
Optical properties of YSAG:Yb:Er ceramics with Sc3+ cations in the dodecahedral and octahedral positions of the garnet crystal lattice". Modern Electronic Materials. 2023. 9(3). P.133-144.
10.3897/j.moem.9.3.115403
Nanofluorides. // J. Fluorine Chem. 2011. V.132. Is.12. P.1012-1039.
DOI:10.1016/j.jfluchem.2011.06.025
Nanostructure of Optical Fluoride Ceramics. // Inorganic Materials: Applied Research, V.2. (2) 2011. P.97-103.
DOI:10.1134/S207511331102002X
Spectral-kinetic characteristics of crystals and nanoceramics based on BaF2 and BaF2: Ce. Physics of the Solid State volume 52, pages1910–1914 (2010).
DOI:10.1134/S1063783410090209
Исследование структуры и механизмов рассеяния фононов субтерагерцевых частот в монокристаллах и оптической керамике из фторида лития. // ЖЭТФ.2010. Т.137 № 6, С. 1126-1132.
Optical absorption in CaF2 nanoceramics. // Quantum Electronics. 2009. Vol.39. (10). P.943-947.
DOI:10.1070/QE2009V039N10ABEH014008
A study of the transport of thermal acoustic phonons in CaF 2 single crystals and ceramics within the subterahertz frequency range. Doklady Physics. 2009. V. 54. № 1 P. 14-17.
DOI:10.1134/S1028335809010042
Efficient laser based CaF2-SrF2-YbF3 nanoceramics. // Optics Letters. 2008. Vol. 33. №5 P.521-523.
DOI:10.1364/OL.33.000521
Synthesis of ultrafine fluorite Sr1-xNdxF2+x powders / INORGANIC MATERIALS 2012 vol. 48 p. 531-538
DOI: 10.1134/S002016851205010X
Fluoride laser nanoceramics. // Journal of Physics: Conference Series. V.345. (2012) 012017 P.1-21.
DOI:10.1088/1742-6596/345/1/012017
CaF2:Yb laser ceramics. // Optical Materials. 2013. v.35. p.444-450.
DOI:10.1016/j.optmat.2012.09.035
Optical Lithium Fluoride Ceramics. // Doklady Physics, 2007, Vol.52, №12, pp.677-680
DOI:10.1134/S1028335807120099
Di- and Trivalent Ytterbium distributions along a melt-grown CaF2 crystal. // Inorganic Materials. 2014. V.50. №7. pp.733-737.
DOI:10.1134/S0020168514070024
Microstructure and scintillation characteristics of BaF2 ceramics. // Inorganic Materials. 2014. Vol.50. №7. pp.738-744.
DOI:10.1134/S002016851407005X
Single-phase nanopowders of Sr0.85-xBaxEu0.15F2.15: Investigation of structure and X-ray luminescent properties // Ceramics International 49 (2023) 39189-39195
DOI:10.1016/j.ceramint.2023.09.262
Elaboration of nanofluorides and ceramics for optical and laser applications./ Chapter in the book “Photonic & Electronic Properties of Fluoride Materials” Ed. A.Tressaud, K. Poeppelmeier, Print Book pp.7-31 2016
http://doi.org/10.1016/B978-0-12-801639-8.00002-7
Irradiation Behavior of Ytterbium-Doped Calcium Fluoride Crystals and Ceramics Inorganic Materials, 2016, Vol. 52, No. 8, pp. 842–850.
DOI:10.1134/S0020168516080033
Estimation of Sc3+ solubility in dodecahedral and octahedral sites in YSAG:Yb // J. American Ceramic Society. 2019. V.102(8). P.4862-4873.
https://doi.org/10.1111/jace.16294
Influence of the ceramic powder morphology and forming conditions on the optical transmittance of YAG:Yb ceramics // Ceramics International 45(2019) p.4418-4423
doi.: 10.1016/j.ceramint.2018.11.119
Study of Yb3+ Optical Centers in Fluoride Solid Solution Crystals CaF2–SrF2–YbF3. OPTICS AND SPECTROSCOPY (2020) Vol.128 No.5 p.600-604
DOI:10.1134/S0030400X20050185
Luminescent thermometry based on Ba4Y3F17:Pr3+ and Ba4Y3F17:Pr3+,Yb3+ nanoparticles // Ceramics International. 46 (2020) 11658–11666 https://doi.org/10.1016/j.ceramint.2020.01.19
https://doi.org/10.1016/j.ceramint.2020.01.196
The influence of the Sc3+ dopant on the transmittance of (Y,Er)3Al5O12 ceramics. Dalton Transactions, 2021, 50, 14252 - 14256.
doi.org/ 10.1039/D1DT02419A
The scandium impact on the sintering of YSAG:Yb ceramics with high optical transmittance. Ceramics International 47 (2021) 1772–1784
10.1016/j.ceramint.2020.09.003.
КОРРЕЛЯЦИЯ МЕЖДУ ХИМИЧЕСКИМ СОСТАВОМ И ТЕМПЕРАТУРОЙ КЮРИ НИКЕЛЬ-КОБАЛЬТОВОГО ФЕРРИТА. Журнал структурной химии. 2023. Т.64, №9, 117238.
https://jsc.niic.nsc.ru/article/117238
Synthesis of Ca1–x–yYbxEryF2+x+y Upconversion Powders for the Preparation of Optical Ceramics / Journal of Structural Chemistry. 2023. V. 64 (9). P. 1733–1742.
DOI:10.1134/S0022476623090160
Optical properties of non-stoichiometric YAG: Ce luminescent ceramics. Optical materials. (2023). v.143. #114231
DOI:10.2139/ssrn.4431704
Fabrication and Optical Properties of YSAG:Cr Optical Ceramics. Ceramics International. 2023. V.49, Is.19, P. 32127-32135
https://doi.org/10.1016/j.ceramint.2023.07.181
Оптические и лазерные характеристики Yb: YSAG керамики. Оптика и спектроскопия. 2023. Т.131. вып.5. с.597-603
DOI:10.21883/OS.2023.05.55710.68-22
Оптическая спектроскопия ионов Er3+ в кристаллах BaY1,8Lu0,2F8. Оптика и спектроскопия. 2023. Т.131. вып.5. с.583-588.
DOI:10.21883/OS.2023.05.55708.61-22
Judd-Ofelt Analysis of High Erbium Content Yttrium-Aluminum and Yttrium-Scandium-Aluminum Garnet Ceramics. Inorganics 2022, 10, 170.
https://doi.org/10.3390/inorganics10100170
Stable garnets in the Er2O3-Sc2O3-Al2O3 oxide system for optical ceramics application. Ceramics International. 2022. V.48. is.24. p.p.36739-36747.
doi.org/10.1016/j.ceramint.2022.08.235
Interaction of Calcium and Strontium Carbonates with KF Solutions Russian Journal of Inorganic Chemistry, 2022, Vol. 67, No. 8, pp 1211–1220
DOI:10.1134/S0036023622080101
Study of synthesis temperature effect on β-NaGdF4: Yb3+, Er3+ upconversion luminescence efficiency and decay time using maximum entropy method. Methods and Applications in Fluorescence. 2022. V.10. P.024005
Doi. 10.1088/2050-6120/ac5bdc
Fabrication and characterization of new Er-doped yttrium-scandium-aluminum garnet ceramics. 15-30 January 2022 Chem. Proc. 2022, 9, 18.
https://doi.org/10.3390/IOCC_2022-12163
Sintering and microstructure evolution of Er1.5Y1.5-xScx+yAl5-yO12 garnet ceramics with scandium in dodecahedral and octahedral sites. Journal of the European Ceramic Society.2022.v.42, is.5, p.2464-2477
10.1016/j.jeurceramsoc.2022.01.008
Synthesis of YSAG:Er ceramics and the study of the scandium impact in the dodecahedral and octahedral garnet sites on the Er3+ energy structure. Journal of Luminescence 241 (2022) 118539
doi.org/10.1016/j.jlumin.2021.118539
Ап-конверсионная люминесценция твердых растворов CaF2-SrF2-HoF3 при возбуждении на уровень 5I7 ионов Ho3+. Оптика и спектроскопия. 2023, т.131, вып.3, стр.346-353
DOI: 10.21883/OS.2023.03.55384.4085-22
Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization // Laser. Phys. 26 (2016) 084001
http://dx.doi.org/10.1088/1054-660X/26/8/084001
Синтез и характеризация порошков SrF2:Yb:Tm // Конденсированные среды и межфазные границы. 9 (2017) 57-67.
https://doi.org/10.17308/kcmf.2017.19/177
Preparation of nanodispersed fluorite-type Sr1-xRxF2+x (R = Er, Yb, Ho) phases from citrate solutions // J. Fluor. Chem. 194 (2017) 8–15.
https://doi.org/10.1016/j.jfluchem.2016.12.003
Algorithm for calculation of up-conversion luminophores mixtures chromaticity coordinates // J. Fluor. Chem. 237 (2020) 109607
https://doi.org/10.1016/j.jfluchem.2020.109607
Synthesis of SrF2:Yb:Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH4F // Dalton Transactions. 51 (2022) 5448
https://doi.org/10.1039/d2dt00304j
Features of Ca1-xYxF2+x solid solution heat capacity behavior: diffuse phase transition / Nanosystems: Phys. Chem. Math., 2023, 14 (2), 279–285
DOI:10.17586/2220-8054-2023-14-2-279-285
Thermal Stability of LiRF4 (R = Gd, Tb) Compaunds. Cryst. Res. Tech. 2023. 2200251
DOI:10.1002/crat.202200251
Optical fluoride nanoceramics / Inorganic Materials. 2021. V. 57. I 6. P. 555-578.
DOI:10.1134/S0020168521060078
Comment on the paper “Thermodynamic evaluation and optimization of the (NaNO3 + KNO3 + Na2SO + K2SO4) system” by Ch. Robelin, P. Chartrand, A.D. Pelton, published in J. Chem. Therm. 83 (2015) 12-26. The Journal of Chemical Thermodynamics. – 2020. – V. 149
DOI:10.1016/j.jct.2020.106178
Synthesis of inorganic fluorides in molten salt fluxes and ionic liquid mediums. / J. Fluorine Chem. – 2019. – V. 227. – 109374.
http://doi.org/10.1016/j.jfluchem.2019.109374
Inorganic nanofluorides and related nanocomposites. Russian Chem. Rev.
https://doi.org/10.1070/RC2006v075n12ABEH003637
Temperature-related changes in the structure of YSAG:Yb garnet solid solutions with the high Sc3+ concentration. Journal of the European Ceramic Society
https://doi.org/10.1016/j.jeurceramsoc.2019.07.041
Effect of vacuum sintering conditions on the properties of Y3Al5O12: Ce luminescent ceramics. Modern Electronic Materials 2022; 8(3): 123–130.
https://doi.org/10.3897/j.moem.8.3.98706