Публикации

Сбросить все фильтры
  1.  Influence of MgO and CaO sintering additives on thermophysical, luminescent and optical properties of LuAG:Yb3+ laser ceramics. Optical Materials. 2024.
    https://doi.org/10.1016/j.optmat.2024.116353. 
  2. Fabrication and characterization of LuAG: Er ceramics with high optical transmission. Journal of the European Ceramic Society 45 (2025) 117033
    https://doi.org/10.1016/j.jeurceramsoc.2024.117033
  3. "Temperature dependence of lasing properties of 8.3(3) at.% Yb:YSAG ceramics," 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russian Federation, 2024, pp. 43-43
    doi: 10.1109/ICLO59702.2024.10624196
  4. Comparison of the thermophysical and optical properties of ceramics based on YSAG: Yb,Er solid solutions with different forms of crystal lattice disorder. Ceramics International. 2024.
    https://doi.org/10.1016/j.ceramint.2024.06.296
  5. Influence of Yb3+ content on the optical and thermophysical properties of YSAG:Yb:Er solid solutions. Journal of the American Ceramic Society. 2024; 1–13.
    http://dx.doi.org/10.1111/jace.20077
  6. Optical properties of YSAG:Yb:Er ceramics with Sc3+ cations in the dodecahedral and octahedral positions of the garnet crystal lattice". Modern Electronic Materials. 2023. 9(3). P.133-144.
    10.3897/j.moem.9.3.115403
  7. Nanofluorides. // J. Fluorine Chem. 2011. V.132. Is.12. P.1012-1039.
    DOI:10.1016/j.jfluchem.2011.06.025
  8. Nanostructure of Optical Fluoride Ceramics. // Inorganic Materials: Applied Research, V.2. (2) 2011. P.97-103.
    DOI:10.1134/S207511331102002X
  9. Spectral-kinetic characteristics of crystals and nanoceramics based on BaF2 and BaF2: Ce. Physics of the Solid State volume 52, pages1910–1914 (2010). 
    DOI:10.1134/S1063783410090209
  10. Исследование структуры и механизмов рассеяния фононов субтерагерцевых частот в монокристаллах и оптической керамике из фторида лития. // ЖЭТФ.2010.  Т.137 № 6, С. 1126-1132.

  11. Optical absorption in CaF2 nanoceramics. // Quantum Electronics. 2009. Vol.39. (10). P.943-947.
    DOI:10.1070/QE2009V039N10ABEH014008
  12. A study of the transport of thermal acoustic phonons in CaF 2 single crystals and ceramics within the subterahertz frequency range. Doklady Physics. 2009. V. 54. № 1 P. 14-17.
    DOI:10.1134/S1028335809010042
  13. Efficient laser based CaF2-SrF2-YbF3 nanoceramics. // Optics Letters. 2008. Vol. 33. №5 P.521-523.
    DOI:10.1364/OL.33.000521
  14. Synthesis of ultrafine fluorite Sr1-xNdxF2+x powders / INORGANIC MATERIALS 2012 vol. 48 p. 531-538
    DOI: 10.1134/S002016851205010X
  15. Fluoride laser nanoceramics. // Journal of Physics: Conference Series. V.345. (2012) 012017 P.1-21.
    DOI:10.1088/1742-6596/345/1/012017
  16. CaF2:Yb laser ceramics. // Optical Materials. 2013. v.35. p.444-450.
    DOI:10.1016/j.optmat.2012.09.035
  17. Optical Lithium Fluoride Ceramics. // Doklady Physics, 2007, Vol.52, №12, pp.677-680
    DOI:10.1134/S1028335807120099
  18. Di- and Trivalent Ytterbium distributions along a melt-grown CaF2 crystal. // Inorganic Materials. 2014. V.50. №7. pp.733-737.
    DOI:10.1134/S0020168514070024
  19. Microstructure and scintillation characteristics of BaF2 ceramics. // Inorganic Materials. 2014. Vol.50. №7. pp.738-744.
    DOI:10.1134/S002016851407005X
  20. Single-phase nanopowders of Sr0.85-xBaxEu0.15F2.15: Investigation of structure and X-ray luminescent properties // Ceramics International 49 (2023)  39189-39195
    DOI:10.1016/j.ceramint.2023.09.262
  21. Elaboration of nanofluorides and ceramics for optical and laser applications./ Chapter in the book “Photonic & Electronic Properties of Fluoride Materials” Ed. A.Tressaud, K. Poeppelmeier, Print Book pp.7-31 2016
    http://doi.org/10.1016/B978-0-12-801639-8.00002-7
  22. Irradiation Behavior of Ytterbium-Doped Calcium Fluoride Crystals and Ceramics Inorganic Materials, 2016, Vol. 52, No. 8, pp. 842–850.
    DOI:10.1134/S0020168516080033
  23. Estimation of Sc3+ solubility in dodecahedral and octahedral sites in YSAG:Yb // J. American Ceramic Society. 2019. V.102(8). P.4862-4873.
    https://doi.org/10.1111/jace.16294
  24. Influence of the ceramic powder morphology and forming conditions on the optical transmittance of YAG:Yb ceramics // Ceramics International 45(2019) p.4418-4423
    doi.: 10.1016/j.ceramint.2018.11.119
  25. Study of Yb3+ Optical Centers in Fluoride Solid Solution Crystals CaF2–SrF2–YbF3. OPTICS AND SPECTROSCOPY (2020) Vol.128 No.5 p.600-604
    DOI:10.1134/S0030400X20050185
  26. Luminescent thermometry based on Ba4Y3F17:Pr3+ and Ba4Y3F17:Pr3+,Yb3+ nanoparticles // Ceramics International. 46 (2020) 11658–11666 https://doi.org/10.1016/j.ceramint.2020.01.19
    https://doi.org/10.1016/j.ceramint.2020.01.196
  27. The influence of the Sc3+ dopant on the transmittance of (Y,Er)3Al5O12 ceramics. Dalton Transactions, 2021, 50, 14252 - 14256.
    doi.org/ 10.1039/D1DT02419A
  28. The scandium impact on the sintering of YSAG:Yb ceramics with high optical transmittance. Ceramics International 47 (2021) 1772–1784
    10.1016/j.ceramint.2020.09.003.
  29. КОРРЕЛЯЦИЯ МЕЖДУ ХИМИЧЕСКИМ СОСТАВОМ И ТЕМПЕРАТУРОЙ КЮРИ НИКЕЛЬ-КОБАЛЬТОВОГО ФЕРРИТА. Журнал структурной химии. 2023. Т.64, №9, 117238.
    https://jsc.niic.nsc.ru/article/117238
  30. Synthesis of Ca1–x–yYbxEryF2+x+y Upconversion Powders for the Preparation of Optical Ceramics / Journal of Structural Chemistry. 2023. V. 64 (9). P. 1733–1742.
    DOI:10.1134/S0022476623090160
  31. Optical properties of non-stoichiometric YAG: Ce luminescent ceramics. Optical materials. (2023). v.143. #114231
    DOI:10.2139/ssrn.4431704
  32. Fabrication and Optical Properties of YSAG:Cr Optical Ceramics. Ceramics International. 2023. V.49, Is.19, P. 32127-32135
    https://doi.org/10.1016/j.ceramint.2023.07.181
  33. Оптические и лазерные характеристики Yb: YSAG керамики. Оптика и спектроскопия. 2023. Т.131. вып.5. с.597-603
    DOI:10.21883/OS.2023.05.55710.68-22
  34. Оптическая спектроскопия ионов Er3+ в кристаллах BaY1,8Lu0,2F8. Оптика и спектроскопия. 2023. Т.131. вып.5. с.583-588.
    DOI:10.21883/OS.2023.05.55708.61-22
  35. Judd-Ofelt Analysis of High Erbium Content Yttrium-Aluminum and Yttrium-Scandium-Aluminum Garnet Ceramics. Inorganics 2022, 10, 170.
    https://doi.org/10.3390/inorganics10100170
  36. Stable garnets in the Er2O3-Sc2O3-Al2O3 oxide system for optical ceramics application. Ceramics International. 2022. V.48. is.24. p.p.36739-36747.
    doi.org/10.1016/j.ceramint.2022.08.235
  37. Interaction of Calcium and Strontium Carbonates with KF Solutions Russian Journal of Inorganic Chemistry, 2022, Vol. 67, No. 8, pp 1211–1220
    DOI:10.1134/S0036023622080101
  38. Study of synthesis temperature effect on β-NaGdF4: Yb3+, Er3+ upconversion luminescence efficiency and decay time using maximum entropy method. Methods and Applications in Fluorescence. 2022. V.10. P.024005
    Doi. 10.1088/2050-6120/ac5bdc
  39. Fabrication and characterization of new Er-doped yttrium-scandium-aluminum garnet ceramics. 15-30 January 2022 Chem. Proc. 2022, 9, 18.
    https://doi.org/10.3390/IOCC_2022-12163
  40. Sintering and microstructure evolution of Er1.5Y1.5-xScx+yAl5-yO12 garnet ceramics with scandium in dodecahedral and octahedral sites. Journal of the European Ceramic Society.2022.v.42, is.5, p.2464-2477
    10.1016/j.jeurceramsoc.2022.01.008
  41. Synthesis of YSAG:Er ceramics and the study of the scandium impact in the dodecahedral and octahedral garnet sites on the Er3+ energy structure. Journal of Luminescence 241 (2022) 118539
    doi.org/10.1016/j.jlumin.2021.118539
  42. Ап-конверсионная люминесценция твердых растворов CaF2-SrF2-HoF3 при возбуждении на уровень 5I7 ионов Ho3+. Оптика и спектроскопия. 2023, т.131, вып.3, стр.346-353
    DOI: 10.21883/OS.2023.03.55384.4085-22
  43. Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization // Laser. Phys. 26 (2016) 084001
    http://dx.doi.org/10.1088/1054-660X/26/8/084001
  44. Синтез и характеризация порошков SrF2:Yb:Tm // Конденсированные среды и межфазные границы. 9 (2017) 57-67.
    https://doi.org/10.17308/kcmf.2017.19/177
  45. Preparation of nanodispersed fluorite-type Sr1-xRxF2+x (R = Er, Yb, Ho) phases from citrate solutions // J. Fluor. Chem. 194 (2017) 8–15.
    https://doi.org/10.1016/j.jfluchem.2016.12.003
  46. Algorithm for calculation of up-conversion luminophores mixtures chromaticity coordinates // J. Fluor. Chem. 237 (2020) 109607
    https://doi.org/10.1016/j.jfluchem.2020.109607
  47. Synthesis of SrF2:Yb:Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH4F // Dalton Transactions. 51 (2022) 5448
    https://doi.org/10.1039/d2dt00304j
  48. Features of Ca1-xYxF2+x solid solution heat capacity behavior: diffuse phase transition / Nanosystems: Phys. Chem. Math., 2023, 14 (2), 279–285
    DOI:10.17586/2220-8054-2023-14-2-279-285
  49. Thermal Stability of LiRF4 (R = Gd, Tb) Compaunds. Cryst. Res. Tech. 2023. 2200251
    DOI:10.1002/crat.202200251
  50. Optical fluoride nanoceramics / Inorganic Materials. 2021. V. 57. I 6. P. 555-578.
    DOI:10.1134/S0020168521060078
  51. Comment on the paper “Thermodynamic evaluation and optimization of the (NaNO3 + KNO3 + Na2SO + K2SO4) system” by Ch. Robelin, P. Chartrand, A.D. Pelton, published in J. Chem. Therm. 83 (2015) 12-26. The Journal of Chemical Thermodynamics. – 2020. – V. 149
    DOI:10.1016/j.jct.2020.106178
  52. Synthesis of inorganic fluorides in molten salt fluxes and ionic liquid mediums. / J. Fluorine Chem. – 2019. – V. 227. – 109374.
    http://doi.org/10.1016/j.jfluchem.2019.109374
  53. Inorganic nanofluorides and related nanocomposites. Russian Chem. Rev.
    https://doi.org/10.1070/RC2006v075n12ABEH003637
  54. Temperature-related changes in the structure of YSAG:Yb garnet solid solutions with the high Sc3+ concentration. Journal of the European Ceramic Society
    https://doi.org/10.1016/j.jeurceramsoc.2019.07.041
  55. Effect of vacuum sintering conditions on the properties of Y3Al5O12: Ce luminescent ceramics. Modern Electronic Materials 2022; 8(3): 123–130.
    https://doi.org/10.3897/j.moem.8.3.98706