Публикации

Сбросить все фильтры
  1. Pushing the Limits: Down‐Converting Er3+‐Doped BaF2 Single Crystals with Photoluminescence Quantum Yield Surpassing 100%. Adv. Optical Mater. 2024, 2303094
    https://doi.org/ 10.1002/adom.202303094
  2. The Influence of Concentrations of Sensitizers and Activators on Luminescence Kinetics Parameters of Up-Conversion Nanocomplexes NaYF4:Yb3+/Tm3+. Photonics 2024, 11, 228.
    doi.org/10.3390/photonics11030228
  3. NaGdF4:Yb,Er,Tm upconversion nanoparticles for bioimaging in shortwave-infrared range: study of energy transfer processes and composition optimization. Photonics 2024, 11, 38
    10.3390/photonics11010038
  4. Nanofluorides. // J. Fluorine Chem. 2011. V.132. Is.12. P.1012-1039.
    DOI:10.1016/j.jfluchem.2011.06.025
  5. Наночастицы фторидов с возможностью ап-конверсии для применения в медицине. // Российский биотерапевтический журнал. 2012. Т.11. №2. С.45

  6. Synthesis and luminescent characteristics of submicron powdersd on the basis of sodium and yttrium fluorides doped with rare earth elements. // Nanotechnologies in Russia. 2012. V.7. №11-12. pp.615-628.
    DOI:10.1134/S1995078012060067
  7. Dependence of quantum yield of up-conversion luminescence on the composition of fluorite-type solid solution NaY1-x-yYbxEryF4. // Nanosystems: physics, chemistry, mathematics. 2013. 4(5). P.648-656.

  8. White light luminophores based on Yb3+/Er3+/Tm3+-coactivated strontium fluoride powders. // Materials Chemistry and Physics. 2014. V.148. is.1-2. P.201-207. 
    DOI:10.1016/j.matchemphys.2014.07.032
  9. Effect of the pH on the formation of NaYF4:Yb:Er nanopowders by co-crystallization in presence of polyethyleneimine. // Journal of Fluorine Chemistry. 2014. V.158. p.60-64.
    DOI:10.1002/chin.201412012
  10. New Sr1-x-yRx(NH4)yF2+x-y (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride. Materials Chemistry Physics. 2016. v.172. p.150-157
    doi:10.1016/j.matchemphys.2016.01.055
  11. Исследование синтеза и люминесцентных характеристик фторида кальция, легированного иттербием и эрбием, для биомедицинских приложений. // Конденсированные среды и межфазные границы. 2016. т.18. №4. с.478-484.
    https://istina.msu.ru/publications/article/41845621/
  12. α-NaYF4:Yb:Er@AlPc(C2O3)4 -Based efficient up-conversion luminophores capable to generate singlet oxygen under IR excitation // J Fluorine Chem. 2016. V.182. 104-108.
    doi: http://dx.doi.org/10.1016/j.jfluchem.2015.12.012
  13. Multifunctional upconversion nanoparticles based on NaYGdF4 for laser induced heating, non-contact temperature sensing and controlled hyperthermia with use of pulsed periodic laser excitation / Progress in Biomedical Optics and Imaging - Proceedings of SP
    DOI: 10.1117/12.2312484
  14. Mechanisms and absolute quantum yield of upconversion luminescence of fluoride phosphors / Chinese Optics Letters, Vol. 16, Issue 9, 091901 (2018)
    doi.org/10.3788/COL201816.091901
  15. Upconversion Luminescence of Fluoride Phosphors SrF2:Er,Yb under Laser Excitation at 1.5 μm // Optics and Spectroscopy, 2018, Vol. 125, No. 4, pp. 537–542.
    DOI:10.1134/S0030400X18100132
  16. Hydrophobization of up-conversion luminescent films based on nanocellulose/MF2:Ho particles (M = Sr, Ca) by acrylic resin // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2019, 10 (5), P. 585–598
    DOI:10.17586/2220-8054-2019-10-5-585-598
  17. Upconversion luminescence of CaF2-SrF2-ErF3 single crystals upon 1.5 µm laser excitation / Journal of Physics: Conference Series. (SPbOPEN 2019)  2019. 1410. 012086
    DOI:10.1088/1742-6596/1410/1/012086
  18. Tunable upconversion luminescence of SrF2:Er,Tm phosphors. Journal of Physics: Conference Series (SPbOPEN 2019)  2019. 1410 012121
    DOI:10.1088/1742-6596/1410/1/012121
  19. Down-conversion luminescence of Ce-Yb ions in YF3 // Optical Materials, 2019. v.95. 109256.
    10.1016/j.optmat.2019.109256
  20. Synthesis and down-conversion luminescence of Ba4Y3F17:Yb:Pr solid solutions for photonics. // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2019, 10 (2), P. 190–198.
    DOI: 10.17586/2220-8054-2019-10-2-190-198
  21. Composite up-conversion luminescent films containing a nanocellulose and SrF2:Ho particles // Cellulose 2019 (26), 2403-2423
    DOI:10.1007/s10570-018-2194-4
  22. Achieving high NIR-to-NIR conversion efficiency by optimization of Tm3+ content in Na(Gd,Yb)F4: Tm upconversion luminophores, Laser Physics Letters 2020. 17 125701
    doi.org/10.1088/1612-202X/abbede.
  23. Hydrophobic up-conversion carboxylated nanocellulose/fluoride phosphor composite films modified with alkyl ketene dimer. Carbohydrate polymers. Carbohydrate Polymers 250 (2020) 116866
    doi.org/10.1016/j.carbpol.2020.116866
  24. UV to IR down-conversion luminescence in novel Ba4Y3F17:Yb:Ce solar spectrum sensitizer for silicon solar cells Optical Materials, 2020 v.108 p.110185.
    https://doi.org/10.1016/j.optmat.2020.110185
  25. Near infrared down-conversion luminescence of Ba4Y3F17:Yb3+:Eu3+ nanoparticles under ultraviolet excitation. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS. 2020. 11 (3), P. 316–323
    DOI:10.17586/2220-8054-2020-11-3-316-323
  26. Optimization of upconversion luminescence excitation mode for deeper in vivo bioimaging without contrast loss or overheating // Methods Appl. Fluoresc. 8 (2020) 025006
    doi.org/10.1088/2050-6120/ab7782
  27. Upconversion properties of SrF2:Yb3+,Er3+ single crystals // J. Mater. Chem. C, 2020, 8, 4093-4101.
    DOI:10.1039/C9TC06591A
  28. Study of energy transfer processes between rare earth ions and photosensitizer molecules for photodynamic therapy with IR-excitation. Biomedical Photonics. 2021, 10(4):23-34. (In Russ.)
    https://doi.org/10.24931/2413-9432-2021-10-4-23-34
  29. Harvesting sub-bandgap photons via up-conversion for perovskite solar cells. ACS Applied Materials & Interfaces.  2021, 13, 46, 54874–54883
    DOI:10.1021/acsami.1c13477
  30. Effect of Yb3+ and Er3+ concentration on upconversion luminescence of co-doped BaF2 single crystals. Journal of Materials Chemistry C, 2021, 9, 3493 – 3503

  31. Synthesis of Ca1–x–yYbxEryF2+x+y Upconversion Powders for the Preparation of Optical Ceramics / Journal of Structural Chemistry. 2023. V. 64 (9). P. 1733–1742.
    DOI:10.1134/S0022476623090160
  32. Cubic-phase NaYF4:Pr3+,Yb3+ down-conversion phosphors for optical temperature sensing. Solid State Communications 370 (2023) 115235
    https://doi.org/10.1016/j.ssc.2023.115235
  33. Infrared to visible up-conversion luminescence of SrF2:Ho particles upon excitation of the 5I7 level of Ho3+ ions. Journal of Luminescence, 2023, v.261. 119942
    doi.org/10.1016/j.jlumin.2023.119942.
  34. Impact of sensitizer Yb and activator Tm on luminescence intensity of β-NaYF4:Yb/Tm Nanoluminophores. Nanosystems:Phys. Chem. Math., 2022, 13 (3), 331-341
    DOI:10.17586/2220-8054-2022-13-3-331-341
  35. Study of synthesis temperature effect on β-NaGdF4: Yb3+, Er3+ upconversion luminescence efficiency and decay time using maximum entropy method. Methods and Applications in Fluorescence. 2022. V.10. P.024005
    Doi. 10.1088/2050-6120/ac5bdc
  36. Ап-конверсионная люминесценция твердых растворов CaF2-SrF2-HoF3 при возбуждении на уровень 5I7 ионов Ho3+. Оптика и спектроскопия. 2023, т.131, вып.3, стр.346-353
    DOI: 10.21883/OS.2023.03.55384.4085-22
  37. Синтез ап-конверсионных люминофоров на основе фторида стронция, легированного Ho3+ и Er3+ для визуализаторов двухмикронного излучения // Конденсированные среды и межфазные границы. 18 (2016) 408–413.
    https://journals.vsu.ru/kcmf/article/view/150
  38. Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization // Laser. Phys. 26 (2016) 084001
    http://dx.doi.org/10.1088/1054-660X/26/8/084001
  39. Efficient visible range SrF2:Yb:Er- and SrF2:Yb:Tm-based upconversion luminophores // J. Fluor. Chem. 194 (2017) 6–22.
    https://doi.org/10.1016/j.jfluchem.2016.12.002
  40. Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders under excitation by infrared laser // Laser Phys. Lett. 14 (2017) 076003
    https://doi.org/10.1088/1612-202X/aa7418
  41. Algorithm for calculation of up-conversion luminophores mixtures chromaticity coordinates // J. Fluor. Chem. 237 (2020) 109607
    https://doi.org/10.1016/j.jfluchem.2020.109607
  42. Effect of up-converting luminescent nanoparticles with increased quantum yield incorporated into the fluoropolymer matrix on solanum lycopersicum growth // Agronomy. 12 (2022) 108.
    https://doi.org/10.3390/agronomy12010108
  43. Cultivation of Solanum lycopersicum under Glass Coated with Nanosized Upconversion Luminophore. Appl. Sci. 2021, 11(22), 10726
    https://doi.org/10.3390/app112210726
  44. Effect of Structural Perfection of Crystalline β-NaYF4:Yb,Er Phosphor Powders on the Efficiency of Their Upconversion Luminescence. Inorganic Materials. 58, 90–96 (2022)
    DOI:10.1134/S0020168522010010
  45. Optical fluoride nanoceramics / Inorganic Materials. 2021. V. 57. I 6. P. 555-578.
    DOI:10.1134/S0020168521060078
  46. Synthesis of NaYF4:Yb, Er up-conversion luminophore from nitrate flux. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2020, 11 (4), P. 417–423
    DOI:10.17586/2220-8054-2020-11-4-417-423
  47. Synthesis of Upconversion Luminophores Based on Calcium Fluoride. Condensed Matter and Interphases, 2020, 22(1), 3–10
    http://doi.org/10.17308/kcmf.2020.22/2524
  48. Upconversion microparticles as time-resolved luminescent probes for multiphoton microscopy: desired signal extraction from the streaking effect. J. Biomed. Opt.
    https://doi.org/10.1117/1.JBO.21.9.096002
  49. Up-conversion Quantum Yield of SrF2:Yb3+,Er3+ Sub-micron Particles Prepared by Precipitation from Aqueous Solution. Journal of Materials Chemistry C. 2018,6, 598-604 
    https://doi.org/10.1039/C7TC04913G
  50. Infrared-to-visible upconversion luminescence in SrF2:Er powders upon excitation of the 4I13/2 level. Optical Materials Express. 2018. v.8. #7. p. 1863-1869
    https://doi.org/10.1364/OME.8.001863
  51. Synthesis and down-conversion luminescence investigation of CaF2:Yb:Ce powders for photonics. Journal of Fluorine Chemistry.
    https://doi.org/10.1016/j.jfluchem.2019.04.010
  52. Plant photochemistry under glass coated with up-conversion luminescent film. Appl. Sci. 2022, 12, 7480.
    https://doi.org/10.3390/app12157480  
  53. Laser damage threshold of hydrophobic up-conversion carboxylated nanocellulose/SrF2:Hо composite films functionalized with 3-aminopropyltriethoxysilane. Cellulose
    DOI:10.21203/rs.3.rs-461271/v1
  54. Comparison of quantum yield of upconversion nanocrystals determined by absolute and relative methods. Advanced Photonics Research. 2023, 4, 2200187.
    https://doi.org/10.1002/adpr.202200187