Публикации

Сбросить все фильтры
  1. Pushing the Limits: Down‐Converting Er3+‐Doped BaF2 Single Crystals with Photoluminescence Quantum Yield Surpassing 100%. Adv. Optical Mater. 2024, 2303094
    https://doi.org/ 10.1002/adom.202303094
  2. Thermophysical Characteristics of Single Crystals of Ba1–x–yYbxRyF2+x+y (R = Tm, Ho) Solid Solutions. Inorganic Materials, 2023, Vol. 59, No. 11, pp. 1267–1274.
    DOI: 10.1134/S0020168523110080
  3. Influence of Ultrahigh Dilution Treatment of the Charge on the Growth and Spectroscopic Properties of Nd:MgMoO4 Potential Laser Crystal Crystals 2024, 14 (1), 100
    https://doi.org/10.3390/cryst14010100
  4. Optical spectroscopy of the Er3+ ions heavily doped BaY1.8Lu0.2F8 mixed crystals. Optical Materials 147 (2024) 114585 
    https://doi.org/10.1016/j.optmat.2023.114585
  5. Low temperature singularities of electron density in a two-gap superconductor ZrB12 // Solid State Sciences. – 2023. – V. 142. # 107245.
    DOI:10.1016/j.solidstatesciences.2023.107245
  6. Phonon, defect and magnetic contributions to heat capacity of EuxYb1-xB6 solid solutions // Solid State Sciences. – 2023. – V. 142. - # 107233.
    DOI:10.1016/j.solidstatesciences.2023.107233
  7. Maltese Cross-type magnetic phase diagrams in Tm1-xYbxB12 antiferromagnets with Yb-valence instability and dynamic charge stripes // J. Magnetism and Magnetic Materials. - 2023. V.574. #170671.
    DOI:10.1016/j.jmmm.2023.170671
  8. Growth, structure refinement, thermal expansion and optical spectroscopy of Tm3+-doped MgMoO4 // Optical Materials. – 2023. – V. 138. – C. 113648.
    DOI:10.1016/j.optmat.2023.113648
  9. Growth of Yb:Na2SO4 crystals and study of their spectral – luminescent characteristics Quantum Electronics, 2019, V. 49, N. 11, P. 1008-1010
    DOI:10.1070/QEL17107
  10. Nanofluorides. // J. Fluorine Chem. 2011. V.132. Is.12. P.1012-1039.
    DOI:10.1016/j.jfluchem.2011.06.025
  11. Spectral-kinetic characteristics of crystals and nanoceramics based on BaF2 and BaF2: Ce. Physics of the Solid State volume 52, pages1910–1914 (2010). 
    DOI:10.1134/S1063783410090209
  12. Исследование структуры и механизмов рассеяния фононов субтерагерцевых частот в монокристаллах и оптической керамике из фторида лития. // ЖЭТФ.2010.  Т.137 № 6, С. 1126-1132.

  13. Фазовые равновесия в системе BaB2O4-NaF.// Неорган. Матер. 2010. Т.46. №1. С. 77-80

  14. Crystal growth and phase equilibria in the BaB2O4-NaF system. // Crystal growth and design. 2009. Vol.9. p. 4060-4063.
    DOI:10.1021/cg9002675
  15. A study of the transport of thermal acoustic phonons in CaF 2 single crystals and ceramics within the subterahertz frequency range. Doklady Physics. 2009. V. 54. № 1 P. 14-17.
    DOI:10.1134/S1028335809010042
  16. Thermal conductivity of single crystals of Sr1-xYbxF2+x solid solution.// Doklady Physics. 2008. V. 53. № 8. P. 413-415.
    DOI:10.1134/S1028335808080016
  17. Morphological stability of Solid-Liquid Interface during Melt Crystallization of M1-XRXF2+X Solid Solutions. // Inorganic Materials. 2008. Vol. 44, №13. P.1434-1458
    DOI:10.1134/S0020168508130037
  18. Thermal conductivity of single crystals of Ba1-XYbXF2+X. / Doklady Physics. 2008. Vol.53. №7. pp.353-355.
    DOI:10.1134/S1028335808070045
  19. Теплопроводность γ-облученных монокристаллов LiF. // Письма в ЖТФ. 2008. Т.34. Вып.16. С.48-52.
    DOI:10.1134/S1063785008080233
  20. Thermal conductivity of single crystals of Ca1-XYbXF2+X. / Doklady Physics. 2008. Vol.53. №4. pp.198-200.
    DOI:10.1134/S102833580804006X
  21. Морфологическая устойчивость фронта кристаллизации твердых растворов Ba1-xRxF2+x из расплава. // Конденсированные среды и межфазные границы. 2012. Т.14. №4. С.480-488.

  22. Fluoride laser nanoceramics. // Journal of Physics: Conference Series. V.345. (2012) 012017 P.1-21.
    DOI:10.1088/1742-6596/345/1/012017
  23. Эффективная генерация кристаллов твердых растворов CaF2-SrF2:Yb3+ при диодной лазерной накачке. // Квантовая электроника, 2007, т.37, №10. С.934-937.
    DOI: https://doi.org/10.1070/QE2007v037n10ABEH013662
  24. Di- and Trivalent Ytterbium distributions along a melt-grown CaF2 crystal. // Inorganic Materials. 2014. V.50. №7. pp.733-737.
    DOI:10.1134/S0020168514070024
  25. Formation of dissipative structures at hologram recording in CaF2 crystals with color centers. // 2015. Proc. of SPIE vol.9508 p.95080D-1 - 95080D-9.
    DOI:10.1117/12.2178477
  26. ТЕПЛОВОЕ РАСШИРЕНИЕ КРИСТАЛЛА InI // Доклады академии наук, 2016, т.469, №5. с.547-549.
    DOI:10.7868/S0869565216230134
  27. Single-Crystalline InI - Material for Infrared Optics // Doklady Physics. 2016. v.468. №4-6, pp.261-265.
    DOI:10.1134/S1028335816060069
  28. Irradiation Behavior of Ytterbium-Doped Calcium Fluoride Crystals and Ceramics Inorganic Materials, 2016, Vol. 52, No. 8, pp. 842–850.
    DOI:10.1134/S0020168516080033
  29. Luminescence of Ba1-xLaxF2+x:Ce3+ crystals // Doklady Physics 2016. V.61. №2. p. 50-54.
    DOI:10.1134/S1028335816020063
  30. Absorption and Luminescence Spectra of CeF3_Doped BaF2 Single Crystals and Nanoceramics // Inorganic Materials, 2016, V. 52, No. 2, p. 213–217. 
    DOI:10.1134/S0020168516020047
  31. Low temperature phase formation in the CaF2–HoF3 system. // Russ. J. Inorg. Chem. 62 (2017) p.1173–1176.
    DOI:10.1134/S0036023617090078
  32. Акустооптическое взаимодействие в кристалле моноиодида индия // ДОКЛАДЫ АКАДЕМИИ НАУК ФИЗИКА, 2017, т. 476, № 3, с. 276–279.
    https://doi.org/10.7868/S086956521727007X
  33. Phase Equilibria in LiYF4–LiLuF4 System and Heat Conductivity of LiY1–xLuxF4 Single Crystals. // Russian Journal of Inorganic Chemistry, 2018, Vol. 63, No. 4, pp. 433–438.
    DOI:10.1134/S0036023618040162
  34. Monoclinic zinc monotungstate Yb3+,Li+:ZnWO4: Part I. Czochralski growth, structure refinement and Raman spectra. Journal of Luminescence. (2020). 228. 117601
    DOI:10.1016/j.jlumin.2020.117601
  35. Thermophysical Properties of Single Crystals of CaF2–SrF2–RF3 (R = Ho, Pr) Fluorite Solid Solutions Inorganic Materials, 2020, Vol. 56, No. 9, pp. 975–981.
    DOI:10.1134/S0020168520090113
  36. Study of Yb3+ Optical Centers in Fluoride Solid Solution Crystals CaF2–SrF2–YbF3. OPTICS AND SPECTROSCOPY (2020) Vol.128 No.5 p.600-604
    DOI:10.1134/S0030400X20050185
  37. Simultaneous measurement of the emission quantum yield and local temperature: The illustrative example of SrF2:Yb3+/Er3+ single crystals / European Journal of Inorganic Chemistry. 2020. v.2020, is.17. 1555–1561
    https://doi.org/10.1002/ejic.202000381
  38. Upconversion properties of SrF2:Yb3+,Er3+ single crystals // J. Mater. Chem. C, 2020, 8, 4093-4101.
    DOI:10.1039/C9TC06591A
  39. Investigation of the deposition of calcium fluoride nanoparticles on the chips of CaF2 single crystals. Condensed Matter and Interphases. 2021;23(4): 607–613
    DOI:10.17308/kcmf.2021.23/3681
  40. Harvesting sub-bandgap photons via up-conversion for perovskite solar cells. ACS Applied Materials & Interfaces.  2021, 13, 46, 54874–54883
    DOI:10.1021/acsami.1c13477
  41. Thermal conductivity of single crystals of SrF2 - BaF2 solid solution // Inorg. mater. 2021 Vol. 57, No. 6, pp. 629–633.
    DOI:10.1134/S002016852106008X
  42. Growth and physical properties of CaSrBaF6 single crystals. Condensed Matter and Interphases, 2021, 23(1), 101–107
    DOI:10.17308/kcmf.2021.23/3310
  43. Культура и мышьяк. Химия и жизнь. 2023. № 9. С. 48-49.

  44. ТЕПЛОПРОВОДНОСТЬ МОНОКРИСТАЛЛОВ ТВЕРДЫХ РАСТВОРОВ СИСТЕМЫ CaF2–SrF2–BaF2–YbF3 НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ, 2023, том 59, № 5
    https://doi.org/10.31857/S0002337X23050135
  45. Phase Transition in a Tetraaniline/Nanosilicon Composite Film Detected by Impedance Spectroscopy // J. Phys. Chem. C  - 2023 – V. 127. – P. 17063−17077
    https://doi.org/10.1021/acs.jpcc.3c02466
  46. Positive and negative magnetoresistance and charge transport anisotropy in RB12 (R - Ho, Er, Tm) antiferromagnets with dynamic charge stripes. // Solid State Sciences 142 - 2023 – V. 142 -  107232.
    DOI:10.1016/j.solidstatesciences.2023.107232
  47. Optical Properties of Fluorozirconate Glasses Doped with Chromium Ions // Russian Journal of Inorganic Chemistry. – 2023. – V. 68. – No. 8. – P. 1096–1101

  48. Synthesis of Microstructures of Hexagonal Boron Nitride in Gyrotron Discharge in Metal–Dielectric Powder Mixtures. High Energy Chemistry, 2023, Vol. 57, Suppl. 1, pp. S53–S56
    DOI: 10.1134/S0018143923070111
  49. The ACCESS Collaboration. Array of cryogenic calorimeters to evaluate the spectral shape of forbidden β-decays: the ACCESS project. Eur. Phys. J. Plus (2023) v.138, article number 445
    https://doi.org/10.1140/epjp/s13360-023-03946-x
  50. Low-temperature phase formation in the BaF2-LaF3 system // Inorganic Materials. 2023. V. 59. № 3. P. 295-305.
    DOI:10.1134/S0020168523030019
  51. Optical properties of LiGdF4 single crystal in the terahertz and infrared ranges // Photonics. – 2023. - V. 10. - # 84 (12 pp.).
    https://doi.org/10.3390/photonics10010084
  52. "Spectroscopy properties of Dy3+ doped CaF2 single crystals and CaF2-SrF2 solid liquid," 2022 International Conference Laser Optics (ICLO), 2022, pp. 1-1,
    DOI:10.1109/ICLO54117.2022.9840327
  53. Long-wavelength optical properties of the Ca0.33Sr0.33Ba0.33F2 solid solution single crystals. // Optical Materials. 2022. v.127. 112267.
    DOI.10.1016/j.optmat.2022.112267
  54. Thermal Conductivity of Single Crystals of CaF2–BaF2 Solid Solutions. Inorganic Materials, 2022, Vol. 58, No. 4, pp. 396–402
    DOI:10.1134/S0020168522040136
  55. Assessment of Cs2HfCl6 crystals applicability as low-temperature scintillating bolometers by their thermodynamic characteristics. Journal of Mater Chem C 2022. 10, 5218 - 5229
    doi. 10.1039/D1TC06166F
  56. Ап-конверсионная люминесценция твердых растворов CaF2-SrF2-HoF3 при возбуждении на уровень 5I7 ионов Ho3+. Оптика и спектроскопия. 2023, т.131, вып.3, стр.346-353
    DOI: 10.21883/OS.2023.03.55384.4085-22
  57. Influence of accidental impurities on the spectroscopic and luminescent properties of ZnWO4 crystal. Materials 2023, 16, 2611.эо
    https://doi.org/10.3390/ma16072611
  58. Синтез и характеризация порошков SrF2:Yb:Tm // Конденсированные среды и межфазные границы. 9 (2017) 57-67.
    https://doi.org/10.17308/kcmf.2017.19/177
  59. Preparation of nanodispersed fluorite-type Sr1-xRxF2+x (R = Er, Yb, Ho) phases from citrate solutions // J. Fluor. Chem. 194 (2017) 8–15.
    https://doi.org/10.1016/j.jfluchem.2016.12.003
  60. Synthesis of SrF2:Yb:Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH4F // Dalton Transactions. 51 (2022) 5448
    https://doi.org/10.1039/d2dt00304j
  61. Thermal Stability of LiRF4 (R = Gd, Tb) Compaunds. Cryst. Res. Tech. 2023. 2200251
    DOI:10.1002/crat.202200251
  62. Age‑related changes in cationic compositions of human cranial base bone apatite measured by X‑ray energy dispersive spectroscopy (EDS) coupled with scanning electron microscope (SEM). BioMetals. 2022, 35, рр. 1077-1094
    https://doi.org/10.1007/s10534-022-00425-1
  63. Effect of Structural Perfection of Crystalline β-NaYF4:Yb,Er Phosphor Powders on the Efficiency of Their Upconversion Luminescence. Inorganic Materials. 58, 90–96 (2022)
    DOI:10.1134/S0020168522010010
  64. Comment on the paper “Thermodynamic evaluation and optimization of the (NaNO3 + KNO3 + Na2SO + K2SO4) system” by Ch. Robelin, P. Chartrand, A.D. Pelton, published in J. Chem. Therm. 83 (2015) 12-26. The Journal of Chemical Thermodynamics. – 2020. – V. 149
    DOI:10.1016/j.jct.2020.106178
  65. Теплопроводность монокристаллов гетеровалентных твердых растворов фторидов иттербия и празеодима во фториде кальция. // Конденсированные среды и межфазные границы

  66. Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals. // Quantum Electronics.
    https://doi10.1070/QE200v036n07ABEH013178
  67. BaO-BaB2O4 phase systems // Russian journal of inorganic chemistry

  68. Выращивание объемных кристаллов β-BaB2O4. высокого оптического качества в системе BaB2O4 - NaBaBO3 // Неорг. матер.
    DOI:10.1007/s10789-005-0082-4
  69. Новый ортоборат натрия-бария NaBa4(BO3)3 // Ж. неорган. химии

  70. Indium Iodide Single Crystal – Breakthrough Material for Infrared Acousto-Optics. Optics Letters
    https://doi.org/10.1364/OL.393737
  71. Electrical Conductivity of Sodium Sulfate-Based Phases. Inorganic Materials, 2022, Vol. 58, No. 8, pp. 806–813
    https://doi.org/10.1134/S0020168522080118
  72. Comparison of quantum yield of upconversion nanocrystals determined by absolute and relative methods. Advanced Photonics Research. 2023, 4, 2200187.
    https://doi.org/10.1002/adpr.202200187