Главная
История лаборатории
Наши возможности
Наши достижения
Сотрудники
Новости и события
Публикации
Партнеры
Фториды
Оксиды
Галогениды
Монокристаллы
Порошки
Керамика
Люминофоры
Лазеры
Алмазные композиты
Наноцеллюлозные пленки
Минералогия
Ап-конверсия
Патенты
Публикации
Сбросить все фильтры
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
Influence of MgO and CaO sintering additives on thermophysical, luminescent and optical properties of LuAG:Yb3+ laser ceramics. Optical Materials. 2024.
https://doi.org/10.1016/j.optmat.2024.116353.
Photodynamic processes in prospective downconversion luminophores NaLa(MoO4)2:Yb3+. 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russian Federation, 2024, pp. 43-43
10.1109/ICLO59702.2024.10624167
Yb:YSAG ceramics: an attractive thin-disk laser material alternative to a single crystal? Ceramics International
https://doi.org/10.1016/j.ceramint.2024.09.381
Structure and luminescence properties of EuF3 and SrF2:Eu nanoparticles after microwave plasma annealing in “methane–hydrogen”. Dalton Trans. 2024
https://doi.org/10.1039/D4DT01664E
X-ray luminescence of Sr0.925–xBaxEu0.075F2.075 nanopowders. Condensed Matter and Interphases. 2024;26(2): 247–252
https://doi.org/10.17308/kcmf.2024.26/11937
Pushing the Limits: Down‐Converting Er3+‐Doped BaF2 Single Crystals with Photoluminescence Quantum Yield Surpassing 100%. Adv. Optical Mater. 2024, 2303094
https://doi.org/ 10.1002/adom.202303094
Diamond seed dependent luminescence properties of CVD diamond composite. Carbon. 2024. V.222. #118975.
https://doi.org/10.1016/j.carbon.2024.118975
The Influence of Concentrations of Sensitizers and Activators on Luminescence Kinetics Parameters of Up-Conversion Nanocomplexes NaYF4:Yb3+/Tm3+. Photonics 2024, 11, 228.
doi.org/10.3390/photonics11030228
Structural Micromodification of Diamond by Femtosecond Laser Pulses Through Optical Contact with a Nonlinear Highly Refractive Immersion Medium. JETP Letters. 2024.
DOI: 10.1134/S0021364024600149
Synthesis of KGd2F7:Yb:Er Luminophores by Co-Precipitation from Aqueous Solutions. Journal of Structural Chemistry. 2024. V. 65, P.138–148.
https://doi.org/10.1134/S002247662401013X
Influence of Ultrahigh Dilution Treatment of the Charge on the Growth and Spectroscopic Properties of Nd:MgMoO4 Potential Laser Crystal Crystals 2024, 14 (1), 100
https://doi.org/10.3390/cryst14010100
Photo- and X-ray induced cytotoxicity of CeF3-YF3-TbF3 nanoparticle-polyvinylpyrrolidone –“Radachlorin” composites for combined photodynamic therapy. Materials 2024, 17, 316.
https://doi.org/10.3390/ma17020316
NaGdF4:Yb,Er,Tm upconversion nanoparticles for bioimaging in shortwave-infrared range: study of energy transfer processes and composition optimization. Photonics 2024, 11, 38
10.3390/photonics11010038
Optical spectroscopy of the Er3+ ions heavily doped BaY1.8Lu0.2F8 mixed crystals. Optical Materials 147 (2024) 114585
https://doi.org/10.1016/j.optmat.2023.114585
Optical properties of YSAG:Yb:Er ceramics with Sc3+ cations in the dodecahedral and octahedral positions of the garnet crystal lattice". Modern Electronic Materials. 2023. 9(3). P.133-144.
10.3897/j.moem.9.3.115403
Effect of the fluorinating agent type (NH4F, NaF, KF) on the particle size and emission properties of SrF2:Yb:Er luminophores // J. Mater. Chem. C. 2024.
https://doi.org/10.1039/D3TC03926A
X-ray luminescence of SrF2:Eu nanopowders // Opt. Spectrosc. – 2023. - V. 131(5). - P. 633-638
DOI: 10.61011/EOS.2023.05.56516.58-22
Growth, structure refinement, thermal expansion and optical spectroscopy of Tm3+-doped MgMoO4 // Optical Materials. – 2023. – V. 138. – C. 113648.
DOI:10.1016/j.optmat.2023.113648
Growth of Yb:Na2SO4 crystals and study of their spectral – luminescent characteristics Quantum Electronics, 2019, V. 49, N. 11, P. 1008-1010
DOI:10.1070/QEL17107
Nanofluorides. // J. Fluorine Chem. 2011. V.132. Is.12. P.1012-1039.
DOI:10.1016/j.jfluchem.2011.06.025
Исследование структуры и механизмов рассеяния фононов субтерагерцевых частот в монокристаллах и оптической керамике из фторида лития. // ЖЭТФ.2010. Т.137 № 6, С. 1126-1132.
Наночастицы фторидов с возможностью ап-конверсии для применения в медицине. // Российский биотерапевтический журнал. 2012. Т.11. №2. С.45
Synthesis and luminescent characteristics of submicron powdersd on the basis of sodium and yttrium fluorides doped with rare earth elements. // Nanotechnologies in Russia. 2012. V.7. №11-12. pp.615-628.
DOI:10.1134/S1995078012060067
Dependence of quantum yield of up-conversion luminescence on the composition of fluorite-type solid solution NaY1-x-yYbxEryF4. // Nanosystems: physics, chemistry, mathematics. 2013. 4(5). P.648-656.
Optical Lithium Fluoride Ceramics. // Doklady Physics, 2007, Vol.52, №12, pp.677-680
DOI:10.1134/S1028335807120099
Эффективная генерация кристаллов твердых растворов CaF2-SrF2:Yb3+ при диодной лазерной накачке. // Квантовая электроника, 2007, т.37, №10. С.934-937.
DOI: https://doi.org/10.1070/QE2007v037n10ABEH013662
White light luminophores based on Yb3+/Er3+/Tm3+-coactivated strontium fluoride powders. // Materials Chemistry and Physics. 2014. V.148. is.1-2. P.201-207.
DOI:10.1016/j.matchemphys.2014.07.032
Single-phase nanopowders of Sr0.85-xBaxEu0.15F2.15: Investigation of structure and X-ray luminescent properties // Ceramics International 49 (2023) 39189-39195
DOI:10.1016/j.ceramint.2023.09.262
Spectral and cathodoluminescence decay characteristics of the Ba1−xCexF2+x (x = 0.3–0.4) solid solution synthesized by precipitation from aqueous solutions and fusion // Photonics. 10 (2023) 1057
DOI:10.3390/photonics10091057
X-ray luminescence of BaF2:Ce3+ powders // Nanosystems: physics, chemistry, mathematics. 2014 V.5(6). P.752-756.
Effect of the pH on the formation of NaYF4:Yb:Er nanopowders by co-crystallization in presence of polyethyleneimine. // Journal of Fluorine Chemistry. 2014. V.158. p.60-64.
DOI:10.1002/chin.201412012
New Sr1-x-yRx(NH4)yF2+x-y (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride. Materials Chemistry Physics. 2016. v.172. p.150-157
doi:10.1016/j.matchemphys.2016.01.055
Elaboration of nanofluorides and ceramics for optical and laser applications./ Chapter in the book “Photonic & Electronic Properties of Fluoride Materials” Ed. A.Tressaud, K. Poeppelmeier, Print Book pp.7-31 2016
http://doi.org/10.1016/B978-0-12-801639-8.00002-7
Исследование синтеза и люминесцентных характеристик фторида кальция, легированного иттербием и эрбием, для биомедицинских приложений. // Конденсированные среды и межфазные границы. 2016. т.18. №4. с.478-484.
https://istina.msu.ru/publications/article/41845621/
Luminescence of Ba1-xLaxF2+x:Ce3+ crystals // Doklady Physics 2016. V.61. №2. p. 50-54.
DOI:10.1134/S1028335816020063
Absorption and Luminescence Spectra of CeF3_Doped BaF2 Single Crystals and Nanoceramics // Inorganic Materials, 2016, V. 52, No. 2, p. 213–217.
DOI:10.1134/S0020168516020047
α-NaYF4:Yb:Er@AlPc(C2O3)4 -Based efficient up-conversion luminophores capable to generate singlet oxygen under IR excitation // J Fluorine Chem. 2016. V.182. 104-108.
doi: http://dx.doi.org/10.1016/j.jfluchem.2015.12.012
Diamond-EuF3 nanocomposites with bright orange photoluminescence // Diamond and Related Materials. 2017. v.72. p.47-52.
DOI:10.1016/j.diamond.2016.12.022
Multifunctional upconversion nanoparticles based on NaYGdF4 for laser induced heating, non-contact temperature sensing and controlled hyperthermia with use of pulsed periodic laser excitation / Progress in Biomedical Optics and Imaging - Proceedings of SP
DOI: 10.1117/12.2312484
Mechanisms and absolute quantum yield of upconversion luminescence of fluoride phosphors / Chinese Optics Letters, Vol. 16, Issue 9, 091901 (2018)
doi.org/10.3788/COL201816.091901
Synthesis and quantum yield investigations of the Sr1-x-yPrxYbyF2+x+y luminophores for photonics // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2018, 9 (5), P. 663-668
DOI:10.17586/2220-8054-2018-9-5-663-668
РЕНТГЕНОЛЮМИНЕСЦЕНТНЫЕ КОМПОЗИТЫ НА ОСНОВЕ ПОЛИКРИСТАЛЛИЧЕСКОГО АЛМАЗА С ИНТЕГРИРОВАННЫМИ НАНОЧАСТИЦАМИ NaGdF4:Eu ДЛЯ ФОТОНИКИ.// Конденсированные среды и межфазные границы, 20(3). С.424-431.
DOI:10.17308/kcmf.2018.20/579
Upconversion Luminescence of Fluoride Phosphors SrF2:Er,Yb under Laser Excitation at 1.5 μm // Optics and Spectroscopy, 2018, Vol. 125, No. 4, pp. 537–542.
DOI:10.1134/S0030400X18100132
Synthesis and luminescence studies of CaF2:Yb:Pr solid solutions powders for photonics // Journal of Fluorine Chemistry. 2018. V.211. p.70-75.
https://doi.org/10.1016/j.jfluchem.2018.04.008
Synthesis and Luminescence Characteristics of LaF3:Yb:Er Powders Produced by Coprecipitation from Aqueous Solutions // Russian Journal of Inorganic Chemistry, 2018, Vol. 63, No. 3, pp. 293–302.
DOI:10.1134/S0036023618030130
Hydrophobization of up-conversion luminescent films based on nanocellulose/MF2:Ho particles (M = Sr, Ca) by acrylic resin // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2019, 10 (5), P. 585–598
DOI:10.17586/2220-8054-2019-10-5-585-598
Upconversion luminescence of CaF2-SrF2-ErF3 single crystals upon 1.5 µm laser excitation / Journal of Physics: Conference Series. (SPbOPEN 2019) 2019. 1410. 012086
DOI:10.1088/1742-6596/1410/1/012086
Tunable upconversion luminescence of SrF2:Er,Tm phosphors. Journal of Physics: Conference Series (SPbOPEN 2019) 2019. 1410 012121
DOI:10.1088/1742-6596/1410/1/012121
Down-conversion luminescence of Ce-Yb ions in YF3 // Optical Materials, 2019. v.95. 109256.
10.1016/j.optmat.2019.109256
LUMINESCENCE OF GdF3:Pr:Yb AND YF3:Pr:Yb SOLID SOLUTIONS SYNTHESIZED BY CRYSTALLIZATION FROM THE MELT. // Journal of Applied Spectroscopy, 2019. Vol. 86, No. 5. p. 795-801
DOI:10.1007/s10812-019-00895-1
Synthesis and Luminescence of Sr1–x–yYbxEuyF2+x+y Solid Solutions for Photonics // Inorganic Materials, 2019, Vol. 55, No. 10, pp. 1031–1038
DOI:10.1134/S002016851910008X
Synthesis and down-conversion luminescence of Ba4Y3F17:Yb:Pr solid solutions for photonics. // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2019, 10 (2), P. 190–198.
DOI: 10.17586/2220-8054-2019-10-2-190-198
Influence of Y–Gd ratio on phase formation and spectroscopic properties of NaGd0.8−xYxYb0.17Er0.03F4 solid solutions // Laser Phys. Lett. 16 (2019) 035604 (11pp)
DOI:10.1088/1612-202X/ab00f9
Composite up-conversion luminescent films containing a nanocellulose and SrF2:Ho particles // Cellulose 2019 (26), 2403-2423
DOI:10.1007/s10570-018-2194-4
Achieving high NIR-to-NIR conversion efficiency by optimization of Tm3+ content in Na(Gd,Yb)F4: Tm upconversion luminophores, Laser Physics Letters 2020. 17 125701
doi.org/10.1088/1612-202X/abbede.
Temperature sensing in the short-wave infrared spectral region using core-shell NaGdF4:Yb3+,Ho3+,Er3+@NaYF4 nanothermometers. Nanomaterials 2020, 10, 1992
https://doi.org/10.3390/nano10101992
Monoclinic zinc monotungstate Yb3+,Li+:ZnWO4: Part I. Czochralski growth, structure refinement and Raman spectra. Journal of Luminescence. (2020). 228. 117601
DOI:10.1016/j.jlumin.2020.117601
UV to IR down-conversion luminescence in novel Ba4Y3F17:Yb:Ce solar spectrum sensitizer for silicon solar cells Optical Materials, 2020 v.108 p.110185.
https://doi.org/10.1016/j.optmat.2020.110185
The Study of the Luminescence of Solid Solutions Based on Yttrium Fluoride Doped with Ytterbium and Europium for Photonics Condensed Matter and Interphases 2020, 22(2), 225–231
https://doi.org/10.17308/kcmf.2020.22/2834
Near infrared down-conversion luminescence of Ba4Y3F17:Yb3+:Eu3+ nanoparticles under ultraviolet excitation. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS. 2020. 11 (3), P. 316–323
DOI:10.17586/2220-8054-2020-11-3-316-323
Study of Yb3+ Optical Centers in Fluoride Solid Solution Crystals CaF2–SrF2–YbF3. OPTICS AND SPECTROSCOPY (2020) Vol.128 No.5 p.600-604
DOI:10.1134/S0030400X20050185
Simultaneous measurement of the emission quantum yield and local temperature: The illustrative example of SrF2:Yb3+/Er3+ single crystals / European Journal of Inorganic Chemistry. 2020. v.2020, is.17. 1555–1561
https://doi.org/10.1002/ejic.202000381
Optimization of upconversion luminescence excitation mode for deeper in vivo bioimaging without contrast loss or overheating // Methods Appl. Fluoresc. 8 (2020) 025006
doi.org/10.1088/2050-6120/ab7782
Upconversion properties of SrF2:Yb3+,Er3+ single crystals // J. Mater. Chem. C, 2020, 8, 4093-4101.
DOI:10.1039/C9TC06591A
Luminescent thermometry based on Ba4Y3F17:Pr3+ and Ba4Y3F17:Pr3+,Yb3+ nanoparticles // Ceramics International. 46 (2020) 11658–11666 https://doi.org/10.1016/j.ceramint.2020.01.19
https://doi.org/10.1016/j.ceramint.2020.01.196
Diamond-rare earth composites with embedded NaGdF4: Eu nanoparticles as robust photo- and X-ray luminescent materials for photonics // ACS Appl. Nano Mater. 2020, 3, 1324-1331
doi.org/10.1021/acsanm.9b02175
The Effect of Environment pH on Surface Photoluminescence of Oxidized Nanodiamonds. J. Phys. Chem. C 2021, 2021, 125, 33, 18247–18258
doi.org/10.1021/acs.jpcc.1c03331
Study of stability of luminescence intensity of β-NaGdF4: Yb: Er nanoparticle colloids in aqueous solution. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2021, 12 (2), P. 218–223
DOI:10.17586/2220-8054-2021-12-2-218-223
Effect of Yb3+ and Er3+ concentration on upconversion luminescence of co-doped BaF2 single crystals. Journal of Materials Chemistry C, 2021, 9, 3493 – 3503
X-ray luminescence of diamond composite films containing yttrium-aluminum garnet nanoparticles with varied composition of Sc-Ce doping. Ceramics International. 2021. v.47, is.10, part A, p.13922-13926.
doi.org/10.1016/j.ceramint.2021.01.259
Diamond composite with embedded YAG:Ce nanoparticles as the fast source of X-ray luminescence in visible and near-IR range. Carbon 174 (2021) p.52-58.
https://doi.org/10.1016/j.carbon.2020.12.020
Optical Properties of Fluorozirconate Glasses Doped with Chromium Ions // Russian Journal of Inorganic Chemistry. – 2023. – V. 68. – No. 8. – P. 1096–1101
Synthesis of Ca1–x–yYbxEryF2+x+y Upconversion Powders for the Preparation of Optical Ceramics / Journal of Structural Chemistry. 2023. V. 64 (9). P. 1733–1742.
DOI:10.1134/S0022476623090160
Optical properties of non-stoichiometric YAG: Ce luminescent ceramics. Optical materials. (2023). v.143. #114231
DOI:10.2139/ssrn.4431704
Fabrication and optical properties of garnet ceramics based on Y3-xScxAl5O12 doped with ytterbium and erbium. Dalton Transactions, 2023, 52, p.11285-11296.
DOI:10.1039/D3DT01453C
Cubic-phase NaYF4:Pr3+,Yb3+ down-conversion phosphors for optical temperature sensing. Solid State Communications 370 (2023) 115235
https://doi.org/10.1016/j.ssc.2023.115235
Infrared to visible up-conversion luminescence of SrF2:Ho particles upon excitation of the 5I7 level of Ho3+ ions. Journal of Luminescence, 2023, v.261. 119942
doi.org/10.1016/j.jlumin.2023.119942.
Novel Fluoride Matrix for Dual-Range Optical Sensors and Visualization // Appl. Sci. 2023, 13, 9999.
https://doi.org/10.3390/app13189999
Impact of sensitizer Yb and activator Tm on luminescence intensity of β-NaYF4:Yb/Tm Nanoluminophores. Nanosystems:Phys. Chem. Math., 2022, 13 (3), 331-341
DOI:10.17586/2220-8054-2022-13-3-331-341
SYNTHESIS OF SINGLE-PHASE Sr1-xBaxF2 SOLID SOLUTIONS BY COPRECIPITATION FROM AQUEOUS SOLUTIONS Solid State Sciences. 2022, v.130:106932
DOI:10.1016/j.solidstatesciences.2022.106932
Influence of the intensity of exciting radiation on the luminescent properties of nanopowders NaYF4:Yb/Tm. Optics and Spectroscopy, 2022, Vol. 130, No. 6, p.655-662.
DOI:10.21883/EOS.2022.06.54700.38-22
Luminescent diamond composites, Functional Diamond, 2022. 2:1, 53-63
DOI:10.1080/26941112.2022.2071112
Study of synthesis temperature effect on β-NaGdF4: Yb3+, Er3+ upconversion luminescence efficiency and decay time using maximum entropy method. Methods and Applications in Fluorescence. 2022. V.10. P.024005
Doi. 10.1088/2050-6120/ac5bdc
Cerium-doped gadolinium-scandium-aluminum garnet powders: synthesis and use in X-ray luminescent diamond composites. Ceramics International. 2022. V.48, p.12962-12970.
10.1016/j.ceramint.2022.01.169
Люминесцентные свойства индивидуальных центров “кремний-вакансия” в CVD наноалмазах, выращенных на различных подложках. Оптика и спектроскопия. 2023. Т.131. вып.2. с.233-237.
DOI:10.21883/OS.2023.02.55012.21-23
Ап-конверсионная люминесценция твердых растворов CaF2-SrF2-HoF3 при возбуждении на уровень 5I7 ионов Ho3+. Оптика и спектроскопия. 2023, т.131, вып.3, стр.346-353
DOI: 10.21883/OS.2023.03.55384.4085-22
Получение и характеризация порошков фторида стронция, активированного фторидом неодима. Научно-технический вестник информационных технологий, механики и оптики. 15 (2015) 578–586.
https://doi.org/10.17586/2226-1494-2015-15-4-578-586
Синтез ап-конверсионных люминофоров на основе фторида стронция, легированного Ho3+ и Er3+ для визуализаторов двухмикронного излучения // Конденсированные среды и межфазные границы. 18 (2016) 408–413.
https://journals.vsu.ru/kcmf/article/view/150
Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization // Laser. Phys. 26 (2016) 084001
http://dx.doi.org/10.1088/1054-660X/26/8/084001
Efficient visible range SrF2:Yb:Er- and SrF2:Yb:Tm-based upconversion luminophores // J. Fluor. Chem. 194 (2017) 6–22.
https://doi.org/10.1016/j.jfluchem.2016.12.002
Синтез и характеризация порошков SrF2:Yb:Tm // Конденсированные среды и межфазные границы. 9 (2017) 57-67.
https://doi.org/10.17308/kcmf.2017.19/177
Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders under excitation by infrared laser // Laser Phys. Lett. 14 (2017) 076003
https://doi.org/10.1088/1612-202X/aa7418
Algorithm for calculation of up-conversion luminophores mixtures chromaticity coordinates // J. Fluor. Chem. 237 (2020) 109607
https://doi.org/10.1016/j.jfluchem.2020.109607
Synthesis of SrF2:Yb:Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH4F // Dalton Transactions. 51 (2022) 5448
https://doi.org/10.1039/d2dt00304j
Effect of up-converting luminescent nanoparticles with increased quantum yield incorporated into the fluoropolymer matrix on solanum lycopersicum growth // Agronomy. 12 (2022) 108.
https://doi.org/10.3390/agronomy12010108
Cultivation of Solanum lycopersicum under Glass Coated with Nanosized Upconversion Luminophore. Appl. Sci. 2021, 11(22), 10726
https://doi.org/10.3390/app112210726
Effect of Structural Perfection of Crystalline β-NaYF4:Yb,Er Phosphor Powders on the Efficiency of Their Upconversion Luminescence. Inorganic Materials. 58, 90–96 (2022)
DOI:10.1134/S0020168522010010
Preparation and X-ray luminescence of Ba4±xCe3±xF17±x solid solutions. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2021, 12 (4), P. 505–511.
https://doi.org/10.17586/2220-8054-2021-12-4-505-511
Optical fluoride nanoceramics / Inorganic Materials. 2021. V. 57. I 6. P. 555-578.
DOI:10.1134/S0020168521060078
Synthesis of NaYF4:Yb, Er up-conversion luminophore from nitrate flux. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2020, 11 (4), P. 417–423
DOI:10.17586/2220-8054-2020-11-4-417-423
Comment on the paper “Thermodynamic evaluation and optimization of the (NaNO3 + KNO3 + Na2SO + K2SO4) system” by Ch. Robelin, P. Chartrand, A.D. Pelton, published in J. Chem. Therm. 83 (2015) 12-26. The Journal of Chemical Thermodynamics. – 2020. – V. 149
DOI:10.1016/j.jct.2020.106178
Synthesis of Upconversion Luminophores Based on Calcium Fluoride. Condensed Matter and Interphases, 2020, 22(1), 3–10
http://doi.org/10.17308/kcmf.2020.22/2524
Inorganic nanofluorides and related nanocomposites. Russian Chem. Rev.
https://doi.org/10.1070/RC2006v075n12ABEH003637
Upconversion microparticles as time-resolved luminescent probes for multiphoton microscopy: desired signal extraction from the streaking effect. J. Biomed. Opt.
https://doi.org/10.1117/1.JBO.21.9.096002
Preparation and properties of methylcellulose/nanocellulose/СаF2:Но polymer-inorganic composite films for two-micron radiation visualizers. Journal of Fluorine Chemistry
https://doi.org/10.1016/j.jfluchem.2017.08.012
Up-conversion Quantum Yield of SrF2:Yb3+,Er3+ Sub-micron Particles Prepared by Precipitation from Aqueous Solution. Journal of Materials Chemistry C. 2018,6, 598-604
https://doi.org/10.1039/C7TC04913G
Infrared-to-visible upconversion luminescence in SrF2:Er powders upon excitation of the 4I13/2 level. Optical Materials Express. 2018. v.8. #7. p. 1863-1869
https://doi.org/10.1364/OME.8.001863
Synthesis and down-conversion luminescence investigation of CaF2:Yb:Ce powders for photonics. Journal of Fluorine Chemistry.
https://doi.org/10.1016/j.jfluchem.2019.04.010
Plant photochemistry under glass coated with up-conversion luminescent film. Appl. Sci. 2022, 12, 7480.
https://doi.org/10.3390/app12157480
Laser damage threshold of hydrophobic up-conversion carboxylated nanocellulose/SrF2:Hо composite films functionalized with 3-aminopropyltriethoxysilane. Cellulose
DOI:10.21203/rs.3.rs-461271/v1
Effect of vacuum sintering conditions on the properties of Y3Al5O12: Ce luminescent ceramics. Modern Electronic Materials 2022; 8(3): 123–130.
https://doi.org/10.3897/j.moem.8.3.98706
Comparison of quantum yield of upconversion nanocrystals determined by absolute and relative methods. Advanced Photonics Research. 2023, 4, 2200187.
https://doi.org/10.1002/adpr.202200187
The influence of Medium on Fluorescence Quenching of Colloidal Solutions of the Nd3+:LaF3 Nanoparticles Prepared with HTMW Treatment. Nanomaterials. 2022, 12, 3749.
10.3390/nano12213749
Synthesis of Y3Al5O12:Ce powders for X-ray luminescent diamond composites. Inorganics, 2022, 10, 240.
10.3390/inorganics10120240