Публикации

Сбросить все фильтры
  1. Synthesis of KGd2F7:Yb:Er Luminophores by Co-Precipitation from Aqueous Solutions. Journal of Structural Chemistry. 2024. V. 65, P.138–148.
    https://doi.org/10.1134/S002247662401013X
  2. Effect of the fluorinating agent type (NH4F, NaF, KF) on the particle size and emission properties of SrF2:Yb:Er luminophores // J. Mater. Chem. C. 2024.
    https://doi.org/10.1039/D3TC03926A
  3. X-ray luminescence of SrF2:Eu nanopowders // Opt. Spectrosc. – 2023. - V. 131(5). - P. 633-638
    DOI: 10.61011/EOS.2023.05.56516.58-22
  4. Nanofluorides. // J. Fluorine Chem. 2011. V.132. Is.12. P.1012-1039.
    DOI:10.1016/j.jfluchem.2011.06.025
  5. Coprecipitation from Aqueous Solutions to Prepare Binary Fluorides // Russian Journal of Inorganic Chemistry 2011.v.56.is.10. p.1525-1531.
    DOI:10.1134/S003602361110007X
  6. Synthesis of MgAl2O4 nanopowders. // Inorganic Materials. 2011. V.47. №8. P.895-898.
    DOI:10.1134/S0020168511080231
  7. Coprecipitation of barium-bismuth fluorides from aqueous solutions: Nanochemical effects // Nanotechnologies in Russia. 2011. V. 6, Is. 3, pp 203-210
    DOI:10.1134/S1995078011020078
  8. Получение нанопорошков оксида иттрия из карбонатных прекурсоров. // Ж. неорган. химии. 2010. Т.55. №6. С.883-889

  9. Synthesis of Ba4R3F17 (R stands for Rare-Earth Elements) Powders and Transparent Compacts on Their Base. // Russian Journal of Inorganic Chemistry. 2010. Vol.55. №4. pp.484-493.
    DOI:10.1134/S0036023610040029
  10. Soft chemical synthesis of NaYF4 nanopowders. // Russian Journal of Inorganic Chemistry. 2008. Vol. 53. #11. pp.1681-1685.
    DOI:10.1134/S0036023608110028
  11. Synthesis and luminescent characteristics of submicron powdersd on the basis of sodium and yttrium fluorides doped with rare earth elements. // Nanotechnologies in Russia. 2012. V.7. №11-12. pp.615-628.
    DOI:10.1134/S1995078012060067
  12. Synthesis of ultrafine fluorite         Sr1-xNdxF2+x powders / INORGANIC MATERIALS 2012 vol. 48 p. 531-538
    DOI:10.1134/S002016851205010X
  13. Co-precipitation of yttrium and barium fluorides from aqueous solutions. // Materials Research Bulletin. 2012. V. 47. P.1794-1799.
    DOI:10.1016/j.materresbull.2012.03.027
  14. Dependence of quantum yield of up-conversion luminescence on the composition of fluorite-type solid solution NaY1-x-yYbxEryF4. // Nanosystems: physics, chemistry, mathematics. 2013. 4(5). P.648-656.

  15. Synthesis of yttrium orthoborate powders  // Russian Journal of Inorganic Chemistry. 2007. Т. 52. № 6. С. 829-834
    DOI:10.1134/S0036023607060022
  16. Synthesis of SrF2-YF3 nanopowders by co-precipitation from aqueous solutions. // Mendeleev Communications. 2014. V.24. P.360-362.
    DOI: 10.1016/j.mencom.2014.11.017
  17. White light luminophores based on Yb3+/Er3+/Tm3+-coactivated strontium fluoride powders. // Materials Chemistry and Physics. 2014. V.148. is.1-2. P.201-207. 
    DOI:10.1016/j.matchemphys.2014.07.032
  18. Soft Chemistry Synthesis of Powders in the BaF2–ScF3 System. // Russian Journal of Inorganic Chemistry. 2014. Vol. 59. No. 7. pp. 773–777
    DOI:10.1134/S003602361407016X
  19. Phase formation in LaF3-NaGdF4, NaGdF4-NaLuF4, and NaLuF4-NaYF4 systems: Synthesis of powders by co-precipitation from aqueous solutions. // J. of Fluorine Chemistry. 2014. 161. P.95-101.
    DOI:10.1016/j.jfluchem.2014.02.011
  20. Spectral and cathodoluminescence decay characteristics of the Ba1−xCexF2+x (x = 0.3–0.4) solid solution synthesized by precipitation from aqueous solutions and fusion // Photonics. 10 (2023) 1057
    DOI:10.3390/photonics10091057
  21. X-ray luminescence of BaF2:Ce3+ powders // Nanosystems: physics, chemistry, mathematics. 2014 V.5(6). P.752-756.

  22. Nucleation and growth of fluoride crystals by agglomeration of the nanoparticles // 2014. J. Crystal Growth. V.401. p.63-66.
    DOI:10.1010/j.jcrysgro.2013.12.069
  23. Effect of the pH on the formation of NaYF4:Yb:Er nanopowders by co-crystallization in presence of polyethyleneimine. // Journal of Fluorine Chemistry. 2014. V.158. p.60-64.
    DOI:10.1002/chin.201412012
  24. New Sr1-x-yRx(NH4)yF2+x-y (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride. Materials Chemistry Physics. 2016. v.172. p.150-157
    doi:10.1016/j.matchemphys.2016.01.055
  25. Исследование синтеза и люминесцентных характеристик фторида кальция, легированного иттербием и эрбием, для биомедицинских приложений. // Конденсированные среды и межфазные границы. 2016. т.18. №4. с.478-484.
    https://istina.msu.ru/publications/article/41845621/
  26. α-NaYF4:Yb:Er@AlPc(C2O3)4 -Based efficient up-conversion luminophores capable to generate singlet oxygen under IR excitation // J Fluorine Chem. 2016. V.182. 104-108.
    doi: http://dx.doi.org/10.1016/j.jfluchem.2015.12.012
  27. Мезоструктура гидроксосоединений иттрия и алюминия, получаемых соосаждением из водных растворов в условиях ультразвуковой обработки. // Поверхность: рентгеновские, синхротронные и нейтронные исследования. 2016. №2. С.24-34.
    DOI:10.7868/S0207352816020165
  28. Multifunctional upconversion nanoparticles based on NaYGdF4 for laser induced heating, non-contact temperature sensing and controlled hyperthermia with use of pulsed periodic laser excitation / Progress in Biomedical Optics and Imaging - Proceedings of SP
    DOI: 10.1117/12.2312484
  29. Synthesis and luminescence studies of CaF2:Yb:Pr solid solutions powders for photonics // Journal of Fluorine Chemistry. 2018. V.211. p.70-75.
    https://doi.org/10.1016/j.jfluchem.2018.04.008
  30. Synthesis and Luminescence Characteristics of LaF3:Yb:Er Powders Produced by Coprecipitation from Aqueous Solutions // Russian Journal of Inorganic Chemistry, 2018, Vol. 63, No. 3, pp. 293–302.
    DOI:10.1134/S0036023618030130
  31. Tunable upconversion luminescence of SrF2:Er,Tm phosphors. Journal of Physics: Conference Series (SPbOPEN 2019)  2019. 1410 012121
    DOI:10.1088/1742-6596/1410/1/012121
  32. Synthesis and Luminescence of Sr1–x–yYbxEuyF2+x+y Solid Solutions for Photonics // Inorganic Materials, 2019, Vol. 55, No. 10, pp. 1031–1038
    DOI:10.1134/S002016851910008X
  33. Influence of Y–Gd ratio on phase formation and spectroscopic properties of NaGd0.8−xYxYb0.17Er0.03F4 solid solutions // Laser Phys. Lett. 16 (2019) 035604 (11pp)
    DOI:10.1088/1612-202X/ab00f9
  34. Influence of the ceramic powder morphology and forming conditions on the optical transmittance of YAG:Yb ceramics // Ceramics International 45(2019) p.4418-4423
    doi.: 10.1016/j.ceramint.2018.11.119
  35. Near infrared down-conversion luminescence of Ba4Y3F17:Yb3+:Eu3+ nanoparticles under ultraviolet excitation. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS. 2020. 11 (3), P. 316–323
    DOI:10.17586/2220-8054-2020-11-3-316-323
  36. Phase diagrams of the Li2SO4-Na2SO4 system / Journal of American ceramic society. 2020. v.103, is.5, p.3390-3400
    DOI:10.1111/jace.16996
  37. Study of energy transfer processes between rare earth ions and photosensitizer molecules for photodynamic therapy with IR-excitation. Biomedical Photonics. 2021, 10(4):23-34. (In Russ.)
    https://doi.org/10.24931/2413-9432-2021-10-4-23-34
  38. Effect of Yb3+ and Er3+ concentration on upconversion luminescence of co-doped BaF2 single crystals. Journal of Materials Chemistry C, 2021, 9, 3493 – 3503

  39. The scandium impact on the sintering of YSAG:Yb ceramics with high optical transmittance. Ceramics International 47 (2021) 1772–1784
    10.1016/j.ceramint.2020.09.003.
  40. Fabrication and optical properties of garnet ceramics based on Y3-xScxAl5O12 doped with ytterbium and erbium. Dalton Transactions, 2023, 52, p.11285-11296.
    DOI:10.1039/D3DT01453C
  41. Laser Ablation-Generated Crystalline Selenium Nanoparticles  Prevent Damage of DNA and Proteins Induced by Reactive  Oxygen Species and Protect Mice against Injuries Caused by Radiation-Induced Oxidative Stress  //  Materials  -  2023 -  V. 16 -  5164.
    https://doi.org/10.3390/ma16145164
  42. Cubic-phase NaYF4:Pr3+,Yb3+ down-conversion phosphors for optical temperature sensing. Solid State Communications 370 (2023) 115235
    https://doi.org/10.1016/j.ssc.2023.115235
  43. Hall Effect Anisotropy in the Paramagnetic Phase of Ho0.8Lu0.2B12 Induced by Dynamic Charge Stripes // Molecules. – 2023. – V. 28. – P. 676.
    DOI:10.3390/molecules28020676
  44. Impact of sensitizer Yb and activator Tm on luminescence intensity of β-NaYF4:Yb/Tm Nanoluminophores. Nanosystems:Phys. Chem. Math., 2022, 13 (3), 331-341
    DOI:10.17586/2220-8054-2022-13-3-331-341
  45. SYNTHESIS OF SINGLE-PHASE Sr1-xBaxF2 SOLID SOLUTIONS BY COPRECIPITATION FROM AQUEOUS SOLUTIONS Solid State Sciences. 2022, v.130:106932
    DOI:10.1016/j.solidstatesciences.2022.106932
  46. Influence of the intensity of exciting radiation on the luminescent properties of nanopowders NaYF4:Yb/Tm. Optics and Spectroscopy, 2022, Vol. 130, No. 6, p.655-662.
    DOI:10.21883/EOS.2022.06.54700.38-22
  47. Interaction of Calcium and Strontium Carbonates with KF Solutions Russian Journal of Inorganic Chemistry, 2022, Vol. 67, No. 8, pp 1211–1220
    DOI:10.1134/S0036023622080101
  48. Study of synthesis temperature effect on β-NaGdF4: Yb3+, Er3+ upconversion luminescence efficiency and decay time using maximum entropy method. Methods and Applications in Fluorescence. 2022. V.10. P.024005
    Doi. 10.1088/2050-6120/ac5bdc
  49. Cerium-doped gadolinium-scandium-aluminum garnet powders: synthesis and use in X-ray luminescent diamond composites. Ceramics International. 2022. V.48, p.12962-12970.
    10.1016/j.ceramint.2022.01.169
  50. Ап-конверсионная люминесценция твердых растворов CaF2-SrF2-HoF3 при возбуждении на уровень 5I7 ионов Ho3+. Оптика и спектроскопия. 2023, т.131, вып.3, стр.346-353
    DOI: 10.21883/OS.2023.03.55384.4085-22
  51. Получение и характеризация порошков фторида стронция, активированного фторидом неодима. Научно-технический вестник информационных технологий, механики и оптики. 15 (2015) 578–586.
    https://doi.org/10.17586/2226-1494-2015-15-4-578-586
  52. Синтез ап-конверсионных люминофоров на основе фторида стронция, легированного Ho3+ и Er3+ для визуализаторов двухмикронного излучения // Конденсированные среды и межфазные границы. 18 (2016) 408–413.
    https://journals.vsu.ru/kcmf/article/view/150
  53. Efficient visible range SrF2:Yb:Er- and SrF2:Yb:Tm-based upconversion luminophores // J. Fluor. Chem. 194 (2017) 6–22.
    https://doi.org/10.1016/j.jfluchem.2016.12.002
  54. Synthesis of СаF2-YF3 nanopowders by co-precipitation from aqueos solutions // Nanosystems: Physics, Chemistry, Mathematics. 8 (2017) 462–470.
    https://doi.org/10.17586/2220-8054-2017-8-4-462-470
  55. Синтез и характеризация порошков SrF2:Yb:Tm // Конденсированные среды и межфазные границы. 9 (2017) 57-67.
    https://doi.org/10.17308/kcmf.2017.19/177
  56. Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders under excitation by infrared laser // Laser Phys. Lett. 14 (2017) 076003
    https://doi.org/10.1088/1612-202X/aa7418
  57. Preparation of nanodispersed fluorite-type Sr1-xRxF2+x (R = Er, Yb, Ho) phases from citrate solutions // J. Fluor. Chem. 194 (2017) 8–15.
    https://doi.org/10.1016/j.jfluchem.2016.12.003
  58. Synthesis of SrF2:Yb:Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH4F // Dalton Transactions. 51 (2022) 5448
    https://doi.org/10.1039/d2dt00304j
  59. Effect of up-converting luminescent nanoparticles with increased quantum yield incorporated into the fluoropolymer matrix on solanum lycopersicum growth // Agronomy. 12 (2022) 108.
    https://doi.org/10.3390/agronomy12010108
  60. Features of Ca1-xYxF2+x solid solution heat capacity behavior: diffuse phase transition / Nanosystems: Phys. Chem. Math., 2023, 14 (2), 279–285
    DOI:10.17586/2220-8054-2023-14-2-279-285
  61. Thermal Stability of LiRF4 (R = Gd, Tb) Compaunds. Cryst. Res. Tech. 2023. 2200251
    DOI:10.1002/crat.202200251
  62. Age‑related changes in cationic compositions of human cranial base bone apatite measured by X‑ray energy dispersive spectroscopy (EDS) coupled with scanning electron microscope (SEM). BioMetals. 2022, 35, рр. 1077-1094
    https://doi.org/10.1007/s10534-022-00425-1
  63. Effect of Structural Perfection of Crystalline β-NaYF4:Yb,Er Phosphor Powders on the Efficiency of Their Upconversion Luminescence. Inorganic Materials. 58, 90–96 (2022)
    DOI:10.1134/S0020168522010010
  64. Preparation and X-ray luminescence of Ba4±xCe3±xF17±x solid solutions. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2021, 12 (4), P. 505–511.
    https://doi.org/10.17586/2220-8054-2021-12-4-505-511
  65. Transformation of calcite CaCO3 to fluorite CaF2 by action of KF solution. J. Fluor. Chem. 2021. V. 251. 109898
    https://doi.org/10.1016/j.jfluchem.2021.109898
  66. Synthesis of inorganic fluorides in molten salt fluxes and ionic liquid mediums. / J. Fluorine Chem. – 2019. – V. 227. – 109374.
    http://doi.org/10.1016/j.jfluchem.2019.109374
  67. Получение наночастиц MgO. // Неорганические материалы.

  68. Получение нанопорошков твердых растворов M1-xRxF2+x (M=Ca, Sr, Ba; R=Ce, Nd, Er, Yb). //Ж. неорг. химии. 2007. № 3. т. 52. С.364-369.

  69. Inorganic nanofluorides and related nanocomposites. Russian Chem. Rev.
    https://doi.org/10.1070/RC2006v075n12ABEH003637
  70. Синтез порошков ортоборатов скандия. // Неорган. материалы

  71. Исследование гидратация хлорида стронция и оксихлоридов редкоземельных элементов. // Ж. прикладной химии.

  72. Синтез нанокристаллического ортобората индия методом боратной перегруппировки.// Ж. неорг. химии

  73. Upconversion microparticles as time-resolved luminescent probes for multiphoton microscopy: desired signal extraction from the streaking effect. J. Biomed. Opt.
    https://doi.org/10.1117/1.JBO.21.9.096002
  74. Preparation and properties of methylcellulose/nanocellulose/СаF2:Но polymer-inorganic composite films for two-micron radiation visualizers. Journal of Fluorine Chemistry
    https://doi.org/10.1016/j.jfluchem.2017.08.012
  75. Up-conversion Quantum Yield of SrF2:Yb3+,Er3+ Sub-micron Particles Prepared by Precipitation from Aqueous Solution. Journal of Materials Chemistry C. 2018,6, 598-604 
    https://doi.org/10.1039/C7TC04913G
  76. Infrared-to-visible upconversion luminescence in SrF2:Er powders upon excitation of the 4I13/2 level. Optical Materials Express. 2018. v.8. #7. p. 1863-1869
    https://doi.org/10.1364/OME.8.001863
  77. Synthesis and down-conversion luminescence investigation of CaF2:Yb:Ce powders for photonics. Journal of Fluorine Chemistry.
    https://doi.org/10.1016/j.jfluchem.2019.04.010
  78. Plant photochemistry under glass coated with up-conversion luminescent film. Appl. Sci. 2022, 12, 7480.
    https://doi.org/10.3390/app12157480  
  79. Laser damage threshold of hydrophobic up-conversion carboxylated nanocellulose/SrF2:Hо composite films functionalized with 3-aminopropyltriethoxysilane. Cellulose
    DOI:10.21203/rs.3.rs-461271/v1