Главная
История лаборатории
Наши возможности
Наши достижения
Сотрудники
Новости и события
Публикации
Партнеры
Фториды
Оксиды
Галогениды
Монокристаллы
Порошки
Керамика
Люминофоры
Лазеры
Алмазные композиты
Наноцеллюлозные пленки
Минералогия
Ап-конверсия
Патенты
Публикации
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
Особенности ап-конверсионной люминесценции концентрационных рядов монокристаллов и наночастиц SrF2-ErF3 при возбуждении на уровень 4I11/2 ионов Er3+. Известия высших учебных заведений. Материалы электронной техники. 2024;27(4). https://doi.org/10.17073/16
https://doi.org/10.17073/1609-3577j.met202408.607
Спонтанная нуклеация алмаза в СВЧ-плазме метан-водород на частицах YAG:Ce. Краткие сообщение по физике ФИАН. 2025. Номер 1, стр.36-44.
Influence of MgO and CaO sintering additives on thermophysical, luminescent and optical properties of LuAG:Yb3+ laser ceramics. Optical Materials. 2024.
https://doi.org/10.1016/j.optmat.2024.116353.
Self-Assembly of Particles of a Colloidal Solution of Nanostructured Carbon in Ethanol during Vertical Deposition on a Quartz Substrate. Bull. Lebedev Phys. Inst. 51, 474–481 (2024).
Fabrication and characterization of LuAG: Er ceramics with high optical transmission. Journal of the European Ceramic Society 45 (2025) 117033
https://doi.org/10.1016/j.jeurceramsoc.2024.117033
Study of the spectral and kinetic characteristics of the Er3+ ion in BaY1.8Lu0.2F8 mixed crystals to assess the possibility of continuous laser oscillation at a wavelength of 2.7 μm 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russ
10.1109/iclo59702.2024.10624501
Photodynamic processes in prospective downconversion luminophores NaLa(MoO4)2:Yb3+. 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russian Federation, 2024, pp. 43-43
10.1109/ICLO59702.2024.10624167
Highly dispersed anti-Stokes phosphors based on KGd2F7:Yb,Er single-phase solid solutions. Nanosystems: Phys. Chem. Math., 2024, 15 (5), 702–709
DOI 10.17586/2220-8054-2024-15-5-702-709
Yb:YSAG ceramics: an attractive thin-disk laser material alternative to a single crystal? Ceramics International
https://doi.org/10.1016/j.ceramint.2024.09.381
Fabrication and growth mechanism of t-selenium nanorods during laser ablation and fragmentation in organic liquids, Frontiers in Chemistry
https://doi.org/10.3389/fchem.2024.1449570
Enhanced crystallinity of (Sr,Ba)Nb2O6 films on sapphire and alumina substrates, Thin Solid Films (2024)
doi: https://doi.org/10.1016/j.tsf.2024.140528
Effect of extended defects on phonon confinement in polycrystalline Si and Ge films ChemRxiv
DOI: 10.1109/ICLO59702.2024.10623937
Laser fragmentation of amorphous and crystalline selenium of various morphologies and assessment of their antioxidant and protection properties Frontiers in Chemistry, 12
DOI: 10.3389/FCHEM.2024.1459477.
Phase diagrams of the BaF2–NdF3 and BaF2–PrF3 systems / J. Am. Ceram. Soc. 2024
https://doi.org/10.1111/jace.20152
Structure and luminescence properties of EuF3 and SrF2:Eu nanoparticles after microwave plasma annealing in “methane–hydrogen”. Dalton Trans. 2024
https://doi.org/10.1039/D4DT01664E
"Temperature dependence of lasing properties of 8.3(3) at.% Yb:YSAG ceramics," 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russian Federation, 2024, pp. 43-43
doi: 10.1109/ICLO59702.2024.10624196
Comparison of the thermophysical and optical properties of ceramics based on YSAG: Yb,Er solid solutions with different forms of crystal lattice disorder. Ceramics International. 2024.
https://doi.org/10.1016/j.ceramint.2024.06.296
Influence of Yb3+ content on the optical and thermophysical properties of YSAG:Yb:Er solid solutions. Journal of the American Ceramic Society. 2024; 1–13.
http://dx.doi.org/10.1111/jace.20077
Stabilization of the Ba4Y3F17 phase in the NaF-BaF2-YF3 system. Condensed Matter and Interphases. 2024; 26(2): 314–320
https://doi.org/10.17308/kcmf.2024.26/11942
X-ray luminescence of Sr0.925–xBaxEu0.075F2.075 nanopowders. Condensed Matter and Interphases. 2024;26(2): 247–252
https://doi.org/10.17308/kcmf.2024.26/11937
Annealing process and temperature effects on silicon-vacancy and germanium-vacancy centers in CVD grown polycrystalline diamond // Diamond & Related Materials. -2024. – v. 146. – № 111169.
DOI: 10.1016/j.diamond.2024.111169
Evolution of surface conductivity in SmB6 under nonmagnetic (Yb2+) and magnetic (Eu2+) doping. // Solid State Sciences. – 2024. -V.152. - Cтатья № 107546.
DOI:10.1016/j.solidstatesciences.2024.107546
Nafion: A Flaxible Template for Selective Structuring // Polymers. – 2024. -V.16. № 744
DOI: 10.3390/polym16060744
Phase equilibria in low-temperature regions of phase diagrams // J. Phase Equilibria and Diffusion 2024
https://doi.org/10.1007/s11669-024-01099-7
Study of the thermal conductivity of natural carbonates. Condensed Matter and Interphases, 2024, v.26(1), P. 161-167
https://doi.org/10.17308/kcmf.2024.26/11816
(Fe-Ca-Al)-Phosphate Mineralization Enriched with Rare Earth Elements in Sediments of the Middle Jurassic Paleovalley (Shankinka Ore Occurrence, Moscow Region, Central Part of the Russian Plate) // Lithology and mineral resources. 2024, v.59 №2, 188-205.
https://doi.org/10.1134/S002449022370044X
Fluorite solid solutions of Congruent Melting in the PbF2–CdF2–RF3 systems // Cryst. Rep. 2024, V.69(2), p.270-278
10.1134/S1063774524600182
Fluorite-like phases based on barium and rare earth fluorides. Journal of Structural Chemistry.
https://doi.org/10.26902/JSC_id12684
Numerical Model of Temperature-Dependent Thermal Conductivity in M1-xRxF2+x Heterovalent Solid Solution Nanocomposites, where M Stands for Alkaline-Earth Metals and R for Rare-Earth Metals // Nanosystems: Physics, Chemistry, Mathematics. 2024. V. 15(2) 25
Pushing the Limits: Down‐Converting Er3+‐Doped BaF2 Single Crystals with Photoluminescence Quantum Yield Surpassing 100%. Adv. Optical Mater. 2024, 2303094
https://doi.org/ 10.1002/adom.202303094
Флюс для кристаллизации эпитаксиальных слоев флюорита и способ получения эпитаксиальных слоев флюорита
Заявка на патент РФ. Инициировано 13 января 2021 г. Решение о выдаче патента 21.10.2022. RU 2785132 дата отсчета 26.01.2022
Антистоксовый люминофор для визуализации инфракрасного лазерного излучения.
Заявка на патент 2018128255 от 01.08.2018. Заявитель: ООО «Фотонные Технологические Системы»
Материал для визуализации ИК-излучения и способ его получения.
Патент RU2661553 с приоритетом от 07 августа 2017 г.
Оптический материал инфракрасного диапазона и способ его получения
Патент RU № 2640764 от 11.01.2018 с приоритетом от 30.09.2016.
Способ получения порошка фторида стронция, активированного фторидом неодима для лазерной керамики
Заявка на патент № 2014150470 от 15.12.2014. RU2574264
Способ получения моноиодида индия высокой чистоты
Патент RU 2606450 от 24.08.2015 г.
Сцинтилляционный материал на основе фторида бария и способ его получения
RU 2462733 с приоритетом от 03.03.2011.
Способ получения фторидной нанокерамики
RU2436877 от 06.05.2010
Способ получения сцинтилляционной керамики и сцинтиллятор.
RU 2436122 от 12.08.2010.
Сцинтилляционный материал
RU2436123 от 12.08.2010.
Способ синтеза однофазного нанопорошка фторида бария, легированного фторидом редкоземельного металла.
RU 2411185 от 29.05.09.
Керамический лазерный микроструктурированный материал c двойниковой наноструктурой и способ его изготовления.
Патент на изобретение № RU 2358045. Заявка на патент № 2007130159 от 08.08.2007.
Способ получения фторидов металлов.
Патент на изобретение №2328448 RU. Заявка на патент № 21 2006143065/15 (047037) от 06.12. 2006.
Способ синтеза фторида бария-лантана
Патент РФ № 2808895, опубл. 05.12.2023.
Diamond seed dependent luminescence properties of CVD diamond composite. Carbon. 2024. V.222. #118975.
https://doi.org/10.1016/j.carbon.2024.118975
Thermophysical Characteristics of Single Crystals of Ba1–x–yYbxRyF2+x+y (R = Tm, Ho) Solid Solutions. Inorganic Materials, 2023, Vol. 59, No. 11, pp. 1267–1274.
DOI: 10.1134/S0020168523110080
Syntheses of strontium fluoride nanoparticles in a microreactor with intensely swirling flows // Nanosystems. 2024. V. 13. Nanosystems: Phys. Chem. Math., 2024, 15 (1), 115–121.
DOI 10.17586/2220-8054-2024-15-1-115-121.
The Influence of Concentrations of Sensitizers and Activators on Luminescence Kinetics Parameters of Up-Conversion Nanocomplexes NaYF4:Yb3+/Tm3+. Photonics 2024, 11, 228.
doi.org/10.3390/photonics11030228
Structural Micromodification of Diamond by Femtosecond Laser Pulses Through Optical Contact with a Nonlinear Highly Refractive Immersion Medium. JETP Letters. 2024.
DOI: 10.1134/S0021364024600149
Synthesis of KGd2F7:Yb:Er Luminophores by Co-Precipitation from Aqueous Solutions. Journal of Structural Chemistry. 2024. V. 65, P.138–148.
https://doi.org/10.1134/S002247662401013X
Influence of Ultrahigh Dilution Treatment of the Charge on the Growth and Spectroscopic Properties of Nd:MgMoO4 Potential Laser Crystal Crystals 2024, 14 (1), 100
https://doi.org/10.3390/cryst14010100
Photo- and X-ray induced cytotoxicity of CeF3-YF3-TbF3 nanoparticle-polyvinylpyrrolidone –“Radachlorin” composites for combined photodynamic therapy. Materials 2024, 17, 316.
https://doi.org/10.3390/ma17020316
NaGdF4:Yb,Er,Tm upconversion nanoparticles for bioimaging in shortwave-infrared range: study of energy transfer processes and composition optimization. Photonics 2024, 11, 38
10.3390/photonics11010038
Optical spectroscopy of the Er3+ ions heavily doped BaY1.8Lu0.2F8 mixed crystals. Optical Materials 147 (2024) 114585
https://doi.org/10.1016/j.optmat.2023.114585
Optical properties of YSAG:Yb:Er ceramics with Sc3+ cations in the dodecahedral and octahedral positions of the garnet crystal lattice". Modern Electronic Materials. 2023. 9(3). P.133-144.
10.3897/j.moem.9.3.115403
Effect of the fluorinating agent type (NH4F, NaF, KF) on the particle size and emission properties of SrF2:Yb:Er luminophores // J. Mater. Chem. C. 2024.
https://doi.org/10.1039/D3TC03926A
X-ray luminescence of SrF2:Eu nanopowders // Opt. Spectrosc. – 2023. - V. 131(5). - P. 633-638
DOI: 10.61011/EOS.2023.05.56516.58-22
Low temperature singularities of electron density in a two-gap superconductor ZrB12 // Solid State Sciences. – 2023. – V. 142. # 107245.
DOI:10.1016/j.solidstatesciences.2023.107245
Phonon, defect and magnetic contributions to heat capacity of EuxYb1-xB6 solid solutions // Solid State Sciences. – 2023. – V. 142. - # 107233.
DOI:10.1016/j.solidstatesciences.2023.107233
Maltese Cross-type magnetic phase diagrams in Tm1-xYbxB12 antiferromagnets with Yb-valence instability and dynamic charge stripes // J. Magnetism and Magnetic Materials. - 2023. V.574. #170671.
DOI:10.1016/j.jmmm.2023.170671
Surface conductivity in SmB6 // Solid State Sciences. – 2023. - V. 142. - # 107247.
https://doi.org/10.1016/j.solidstatesciences.2023.107247
Growth, structure refinement, thermal expansion and optical spectroscopy of Tm3+-doped MgMoO4 // Optical Materials. – 2023. – V. 138. – C. 113648.
DOI:10.1016/j.optmat.2023.113648
Laser synthesis of ruby and its nanoparticles for photo-conversion of solar spectrum // Laser Phys. Lett. – 2023. – V. 20. - P. 046001 (7pp). https://doi.org/10.1088/1612-202X/acb708
https://doi.org/10.1088/1612-202X/acb708
Growth of Yb:Na2SO4 crystals and study of their spectral – luminescent characteristics Quantum Electronics, 2019, V. 49, N. 11, P. 1008-1010
DOI:10.1070/QEL17107
Электропроводность фаз на основе сульфата натрия. // Неорг. матер. 2022. Т. 58. № 8. C.836-843.
DOI: 10.31857/S0002337X22080115
О полиморфизме сульфата натрия. // Журн. неорган. химии. 2022. Т. 67. № 7. C. 916-924.
DOI: 10.31857/S0044457X22070200
Phase Diagram of the MgF2–SrF2 System and Interactions of Magnesium and Strontium Fluorides with Other Fluorides / Russian Journal of Inorganic Chemistry, 2023, Vol. 68, No. 12, pp. 1789–1798
https://doi.org/10.1134/S0036023623602325
Nanofluorides. // J. Fluorine Chem. 2011. V.132. Is.12. P.1012-1039.
DOI:10.1016/j.jfluchem.2011.06.025
Nanostructure of Optical Fluoride Ceramics. // Inorganic Materials: Applied Research, V.2. (2) 2011. P.97-103.
DOI:10.1134/S207511331102002X
Coprecipitation from Aqueous Solutions to Prepare Binary Fluorides // Russian Journal of Inorganic Chemistry 2011.v.56.is.10. p.1525-1531.
DOI:10.1134/S003602361110007X
Synthesis of MgAl2O4 nanopowders. // Inorganic Materials. 2011. V.47. №8. P.895-898.
DOI:10.1134/S0020168511080231
Coprecipitation of barium-bismuth fluorides from aqueous solutions: Nanochemical effects // Nanotechnologies in Russia. 2011. V. 6, Is. 3, pp 203-210
DOI:10.1134/S1995078011020078
Фазовые равновесия в системе Ba2Na3[B3O6]2F – BaF2. Кристаллография, 2010. Т.55. №5. С.928-932
DOI:10.1134/S1063774510050305
Spectral-kinetic characteristics of crystals and nanoceramics based on BaF2 and BaF2: Ce. Physics of the Solid State volume 52, pages1910–1914 (2010).
DOI:10.1134/S1063783410090209
Получение нанопорошков оксида иттрия из карбонатных прекурсоров. // Ж. неорган. химии. 2010. Т.55. №6. С.883-889
Synthesis of Ba4R3F17 (R stands for Rare-Earth Elements) Powders and Transparent Compacts on Their Base. // Russian Journal of Inorganic Chemistry. 2010. Vol.55. №4. pp.484-493.
DOI:10.1134/S0036023610040029
Исследование структуры и механизмов рассеяния фононов субтерагерцевых частот в монокристаллах и оптической керамике из фторида лития. // ЖЭТФ.2010. Т.137 № 6, С. 1126-1132.
Фазовые равновесия в системе BaB2O4-NaF.// Неорган. Матер. 2010. Т.46. №1. С. 77-80
Optical absorption in CaF2 nanoceramics. // Quantum Electronics. 2009. Vol.39. (10). P.943-947.
DOI:10.1070/QE2009V039N10ABEH014008
Crystal growth and phase equilibria in the BaB2O4-NaF system. // Crystal growth and design. 2009. Vol.9. p. 4060-4063.
DOI:10.1021/cg9002675
A study of the transport of thermal acoustic phonons in CaF 2 single crystals and ceramics within the subterahertz frequency range. Doklady Physics. 2009. V. 54. № 1 P. 14-17.
DOI:10.1134/S1028335809010042
Thermal conductivity of single crystals of Sr1-xYbxF2+x solid solution.// Doklady Physics. 2008. V. 53. № 8. P. 413-415.
DOI:10.1134/S1028335808080016
Soft chemical synthesis of NaYF4 nanopowders. // Russian Journal of Inorganic Chemistry. 2008. Vol. 53. #11. pp.1681-1685.
DOI:10.1134/S0036023608110028
Efficient laser based CaF2-SrF2-YbF3 nanoceramics. // Optics Letters. 2008. Vol. 33. №5 P.521-523.
DOI:10.1364/OL.33.000521
Morphological stability of Solid-Liquid Interface during Melt Crystallization of M1-XRXF2+X Solid Solutions. // Inorganic Materials. 2008. Vol. 44, №13. P.1434-1458
DOI:10.1134/S0020168508130037
Thermal conductivity of single crystals of Ba1-XYbXF2+X. / Doklady Physics. 2008. Vol.53. №7. pp.353-355.
DOI:10.1134/S1028335808070045
Теплопроводность γ-облученных монокристаллов LiF. // Письма в ЖТФ. 2008. Т.34. Вып.16. С.48-52.
DOI:10.1134/S1063785008080233
Thermal conductivity of single crystals of Ca1-XYbXF2+X. / Doklady Physics. 2008. Vol.53. №4. pp.198-200.
DOI:10.1134/S102833580804006X
Наночастицы фторидов с возможностью ап-конверсии для применения в медицине. // Российский биотерапевтический журнал. 2012. Т.11. №2. С.45
Морфологическая устойчивость фронта кристаллизации твердых растворов Ba1-xRxF2+x из расплава. // Конденсированные среды и межфазные границы. 2012. Т.14. №4. С.480-488.
Особенности синтеза гидрофторида и фторида бария из нитратных растворов. // Наносистемы: физика, химия, математика. 2012. Т.3. №5. С.125-137.
Synthesis and luminescent characteristics of submicron powdersd on the basis of sodium and yttrium fluorides doped with rare earth elements. // Nanotechnologies in Russia. 2012. V.7. №11-12. pp.615-628.
DOI:10.1134/S1995078012060067
Synthesis of ultrafine fluorite Sr1-xNdxF2+x powders / INORGANIC MATERIALS 2012 vol. 48 p. 531-538
DOI: 10.1134/S002016851205010X
Co-precipitation of yttrium and barium fluorides from aqueous solutions. // Materials Research Bulletin. 2012. V. 47. P.1794-1799.
DOI:10.1016/j.materresbull.2012.03.027
Fluoride laser nanoceramics. // Journal of Physics: Conference Series. V.345. (2012) 012017 P.1-21.
DOI:10.1088/1742-6596/345/1/012017
Dependence of quantum yield of up-conversion luminescence on the composition of fluorite-type solid solution NaY1-x-yYbxEryF4. // Nanosystems: physics, chemistry, mathematics. 2013. 4(5). P.648-656.
CaF2:Yb laser ceramics. // Optical Materials. 2013. v.35. p.444-450.
DOI:10.1016/j.optmat.2012.09.035
Optical Lithium Fluoride Ceramics. // Doklady Physics, 2007, Vol.52, №12, pp.677-680
DOI:10.1134/S1028335807120099
Эффективная генерация кристаллов твердых растворов CaF2-SrF2:Yb3+ при диодной лазерной накачке. // Квантовая электроника, 2007, т.37, №10. С.934-937.
DOI: https://doi.org/10.1070/QE2007v037n10ABEH013662
Synthesis of yttrium orthoborate powders // Russian Journal of Inorganic Chemistry. 2007. Т. 52. № 6. С. 829-834
DOI:10.1134/S0036023607060022
Synthesis of SrF2-YF3 nanopowders by co-precipitation from aqueous solutions. // Mendeleev Communications. 2014. V.24. P.360-362.
DOI: 10.1016/j.mencom.2014.11.017
White light luminophores based on Yb3+/Er3+/Tm3+-coactivated strontium fluoride powders. // Materials Chemistry and Physics. 2014. V.148. is.1-2. P.201-207.
DOI:10.1016/j.matchemphys.2014.07.032
Di- and Trivalent Ytterbium distributions along a melt-grown CaF2 crystal. // Inorganic Materials. 2014. V.50. №7. pp.733-737.
DOI:10.1134/S0020168514070024
Microstructure and scintillation characteristics of BaF2 ceramics. // Inorganic Materials. 2014. Vol.50. №7. pp.738-744.
DOI:10.1134/S002016851407005X
Soft Chemistry Synthesis of Powders in the BaF2–ScF3 System. // Russian Journal of Inorganic Chemistry. 2014. Vol. 59. No. 7. pp. 773–777
DOI:10.1134/S003602361407016X
Phase formation in LaF3-NaGdF4, NaGdF4-NaLuF4, and NaLuF4-NaYF4 systems: Synthesis of powders by co-precipitation from aqueous solutions. // J. of Fluorine Chemistry. 2014. 161. P.95-101.
DOI:10.1016/j.jfluchem.2014.02.011
Single-phase nanopowders of Sr0.85-xBaxEu0.15F2.15: Investigation of structure and X-ray luminescent properties // Ceramics International 49 (2023) 39189-39195
DOI:10.1016/j.ceramint.2023.09.262
Spectral and cathodoluminescence decay characteristics of the Ba1−xCexF2+x (x = 0.3–0.4) solid solution synthesized by precipitation from aqueous solutions and fusion // Photonics. 10 (2023) 1057
DOI:10.3390/photonics10091057
X-ray luminescence of BaF2:Ce3+ powders // Nanosystems: physics, chemistry, mathematics. 2014 V.5(6). P.752-756.
Nucleation and growth of fluoride crystals by agglomeration of the nanoparticles // 2014. J. Crystal Growth. V.401. p.63-66.
DOI:10.1010/j.jcrysgro.2013.12.069
Effect of the pH on the formation of NaYF4:Yb:Er nanopowders by co-crystallization in presence of polyethyleneimine. // Journal of Fluorine Chemistry. 2014. V.158. p.60-64.
DOI:10.1002/chin.201412012
Indium monoiodide: preparation and deep purification. // Russian Journal of Inorganic chemistry. 2015. vol. 60 #11. pp.1333-1336.
DOI:10.1134/S0036023615110066
Evolution of yttria nanoparticle ensembles // Nanotechnologies in Russia. 2010, Volume 5, Issue 9, pp 624-634.
DOI:10.1134/S1995078010090065
Formation of dissipative structures at hologram recording in CaF2 crystals with color centers. // 2015. Proc. of SPIE vol.9508 p.95080D-1 - 95080D-9.
DOI:10.1117/12.2178477
New Sr1-x-yRx(NH4)yF2+x-y (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride. Materials Chemistry Physics. 2016. v.172. p.150-157
doi:10.1016/j.matchemphys.2016.01.055
Elaboration of nanofluorides and ceramics for optical and laser applications./ Chapter in the book “Photonic & Electronic Properties of Fluoride Materials” Ed. A.Tressaud, K. Poeppelmeier, Print Book pp.7-31 2016
http://doi.org/10.1016/B978-0-12-801639-8.00002-7
ТЕПЛОВОЕ РАСШИРЕНИЕ КРИСТАЛЛА InI // Доклады академии наук, 2016, т.469, №5. с.547-549.
DOI:10.7868/S0869565216230134
Исследование синтеза и люминесцентных характеристик фторида кальция, легированного иттербием и эрбием, для биомедицинских приложений. // Конденсированные среды и межфазные границы. 2016. т.18. №4. с.478-484.
https://istina.msu.ru/publications/article/41845621/
Phase diagram of the NaF-CaF2 system and the electrical conductivity of a CaF2-based solid solution. // Russian Journal of Inorganic Chemistry. 2016. V.61. #11. Pp.1472-1478.
DOI:10.1134/S003602361611005X
Single-Crystalline InI - Material for Infrared Optics // Doklady Physics. 2016. v.468. №4-6, pp.261-265.
DOI:10.1134/S1028335816060069
Low-temperature phase formation in the BаF2-CeF3 system // J. Fluorine Chemistry, 2016. 187. p.33-39
doi:10.1016/j.jfluchem.2016.05.008
Irradiation Behavior of Ytterbium-Doped Calcium Fluoride Crystals and Ceramics Inorganic Materials, 2016, Vol. 52, No. 8, pp. 842–850.
DOI:10.1134/S0020168516080033
Luminescence of Ba1-xLaxF2+x:Ce3+ crystals // Doklady Physics 2016. V.61. №2. p. 50-54.
DOI:10.1134/S1028335816020063
Absorption and Luminescence Spectra of CeF3_Doped BaF2 Single Crystals and Nanoceramics // Inorganic Materials, 2016, V. 52, No. 2, p. 213–217.
DOI:10.1134/S0020168516020047
α-NaYF4:Yb:Er@AlPc(C2O3)4 -Based efficient up-conversion luminophores capable to generate singlet oxygen under IR excitation // J Fluorine Chem. 2016. V.182. 104-108.
doi: http://dx.doi.org/10.1016/j.jfluchem.2015.12.012
Мезоструктура гидроксосоединений иттрия и алюминия, получаемых соосаждением из водных растворов в условиях ультразвуковой обработки. // Поверхность: рентгеновские, синхротронные и нейтронные исследования. 2016. №2. С.24-34.
DOI:10.7868/S0207352816020165
Phase Equilibria in Systems of Gallium Sulfate with Lithium or Sodium Sulfate // Russian Journal of Inorganic Chemistry, 2017, Vol. 62, No. 11, pp. 1505–1510
DOI:10.1134/S0036023617110067
Low temperature phase formation in the CaF2–HoF3 system. // Russ. J. Inorg. Chem. 62 (2017) p.1173–1176.
DOI:10.1134/S0036023617090078
Синтез сульфата галлия. // Химия и технология неорганических материалов. 2017. Т.12. №.3, С. 52-57.
DOI:10.32362/2410-6593-2017-12-3-52-57
Акустооптическое взаимодействие в кристалле моноиодида индия // ДОКЛАДЫ АКАДЕМИИ НАУК ФИЗИКА, 2017, т. 476, № 3, с. 276–279.
https://doi.org/10.7868/S086956521727007X
Diamond-EuF3 nanocomposites with bright orange photoluminescence // Diamond and Related Materials. 2017. v.72. p.47-52.
DOI:10.1016/j.diamond.2016.12.022
Multifunctional upconversion nanoparticles based on NaYGdF4 for laser induced heating, non-contact temperature sensing and controlled hyperthermia with use of pulsed periodic laser excitation / Progress in Biomedical Optics and Imaging - Proceedings of SP
DOI: 10.1117/12.2312484
Mechanisms and absolute quantum yield of upconversion luminescence of fluoride phosphors / Chinese Optics Letters, Vol. 16, Issue 9, 091901 (2018)
doi.org/10.3788/COL201816.091901
Synthesis and quantum yield investigations of the Sr1-x-yPrxYbyF2+x+y luminophores for photonics // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2018, 9 (5), P. 663-668
DOI:10.17586/2220-8054-2018-9-5-663-668
РЕНТГЕНОЛЮМИНЕСЦЕНТНЫЕ КОМПОЗИТЫ НА ОСНОВЕ ПОЛИКРИСТАЛЛИЧЕСКОГО АЛМАЗА С ИНТЕГРИРОВАННЫМИ НАНОЧАСТИЦАМИ NaGdF4:Eu ДЛЯ ФОТОНИКИ.// Конденсированные среды и межфазные границы, 20(3). С.424-431.
DOI:10.17308/kcmf.2018.20/579
Upconversion Luminescence of Fluoride Phosphors SrF2:Er,Yb under Laser Excitation at 1.5 μm // Optics and Spectroscopy, 2018, Vol. 125, No. 4, pp. 537–542.
DOI:10.1134/S0030400X18100132
Устойчивость фронта кристаллизации твердого раствора Ca1-xSrxF2 по отношению к концентрационному переохлаждению // Кристаллография. 2018. Т.63. №5, С.820-826.
DOI:10.1134/S0023476118050107
Synthesis and luminescence studies of CaF2:Yb:Pr solid solutions powders for photonics // Journal of Fluorine Chemistry. 2018. V.211. p.70-75.
https://doi.org/10.1016/j.jfluchem.2018.04.008
Ca1-x-yYbxPryF2+x+y solid solution powders as a promising materials for crystalline silicon solar energetics // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2018, 9 (2), P. 259–265.
DOI:10.17586/2220-8054-2018-9-2-259-265
The Melt of Sodium Nitrate as a Medium for the Synthesis of Fluorides // Inorganics. 6. 38. (2018). P.1-17
10.3390/inorganics6020038
Phase Equilibria in LiYF4–LiLuF4 System and Heat Conductivity of LiY1–xLuxF4 Single Crystals. // Russian Journal of Inorganic Chemistry, 2018, Vol. 63, No. 4, pp. 433–438.
DOI:10.1134/S0036023618040162
Synthesis and Luminescence Characteristics of LaF3:Yb:Er Powders Produced by Coprecipitation from Aqueous Solutions // Russian Journal of Inorganic Chemistry, 2018, Vol. 63, No. 3, pp. 293–302.
DOI:10.1134/S0036023618030130
Hydrophobization of up-conversion luminescent films based on nanocellulose/MF2:Ho particles (M = Sr, Ca) by acrylic resin // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2019, 10 (5), P. 585–598
DOI:10.17586/2220-8054-2019-10-5-585-598
Prospective visible laser active media based on disordered fluorite-type structure crystals / The European Physical Journal Conferences (IWQO-2019) 220, 03024 (2019)
https://doi.org/10.1051/epjconf/201922003024
Upconversion luminescence of CaF2-SrF2-ErF3 single crystals upon 1.5 µm laser excitation / Journal of Physics: Conference Series. (SPbOPEN 2019) 2019. 1410. 012086
DOI:10.1088/1742-6596/1410/1/012086
Tunable upconversion luminescence of SrF2:Er,Tm phosphors. Journal of Physics: Conference Series (SPbOPEN 2019) 2019. 1410 012121
DOI:10.1088/1742-6596/1410/1/012121
Down-conversion luminescence of Ce-Yb ions in YF3 // Optical Materials, 2019. v.95. 109256.
10.1016/j.optmat.2019.109256
LUMINESCENCE OF GdF3:Pr:Yb AND YF3:Pr:Yb SOLID SOLUTIONS SYNTHESIZED BY CRYSTALLIZATION FROM THE MELT. // Journal of Applied Spectroscopy, 2019. Vol. 86, No. 5. p. 795-801
DOI:10.1007/s10812-019-00895-1
Synthesis and Luminescence of Sr1–x–yYbxEuyF2+x+y Solid Solutions for Photonics // Inorganic Materials, 2019, Vol. 55, No. 10, pp. 1031–1038
DOI:10.1134/S002016851910008X
Synthesis and down-conversion luminescence of Ba4Y3F17:Yb:Pr solid solutions for photonics. // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2019, 10 (2), P. 190–198.
DOI: 10.17586/2220-8054-2019-10-2-190-198
Influence of Y–Gd ratio on phase formation and spectroscopic properties of NaGd0.8−xYxYb0.17Er0.03F4 solid solutions // Laser Phys. Lett. 16 (2019) 035604 (11pp)
DOI:10.1088/1612-202X/ab00f9
Estimation of Sc3+ solubility in dodecahedral and octahedral sites in YSAG:Yb // J. American Ceramic Society. 2019. V.102(8). P.4862-4873.
https://doi.org/10.1111/jace.16294
Composite up-conversion luminescent films containing a nanocellulose and SrF2:Ho particles // Cellulose 2019 (26), 2403-2423
DOI:10.1007/s10570-018-2194-4
Influence of the ceramic powder morphology and forming conditions on the optical transmittance of YAG:Yb ceramics // Ceramics International 45(2019) p.4418-4423
doi.: 10.1016/j.ceramint.2018.11.119
Achieving high NIR-to-NIR conversion efficiency by optimization of Tm3+ content in Na(Gd,Yb)F4: Tm upconversion luminophores, Laser Physics Letters 2020. 17 125701
doi.org/10.1088/1612-202X/abbede.
Temperature sensing in the short-wave infrared spectral region using core-shell NaGdF4:Yb3+,Ho3+,Er3+@NaYF4 nanothermometers. Nanomaterials 2020, 10, 1992
https://doi.org/10.3390/nano10101992
Monoclinic zinc monotungstate Yb3+,Li+:ZnWO4: Part I. Czochralski growth, structure refinement and Raman spectra. Journal of Luminescence. (2020). 228. 117601
DOI:10.1016/j.jlumin.2020.117601
Hydrophobic up-conversion carboxylated nanocellulose/fluoride phosphor composite films modified with alkyl ketene dimer. Carbohydrate polymers. Carbohydrate Polymers 250 (2020) 116866
doi.org/10.1016/j.carbpol.2020.116866
UV to IR down-conversion luminescence in novel Ba4Y3F17:Yb:Ce solar spectrum sensitizer for silicon solar cells Optical Materials, 2020 v.108 p.110185.
https://doi.org/10.1016/j.optmat.2020.110185
The Study of the Luminescence of Solid Solutions Based on Yttrium Fluoride Doped with Ytterbium and Europium for Photonics Condensed Matter and Interphases 2020, 22(2), 225–231
https://doi.org/10.17308/kcmf.2020.22/2834
Near infrared down-conversion luminescence of Ba4Y3F17:Yb3+:Eu3+ nanoparticles under ultraviolet excitation. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS. 2020. 11 (3), P. 316–323
DOI:10.17586/2220-8054-2020-11-3-316-323
Determining the Photophysical Parameters of NaGdF4:Eu Solid Solutions in Suspensions Using the Judd–Ofelt Theory JETP Letters, 2020, Vol. 111, No. 9, pp. 525–531.
DOI:10.1134/S0021364020090064
Thermophysical Properties of Single Crystals of CaF2–SrF2–RF3 (R = Ho, Pr) Fluorite Solid Solutions Inorganic Materials, 2020, Vol. 56, No. 9, pp. 975–981.
DOI:10.1134/S0020168520090113
Study of Yb3+ Optical Centers in Fluoride Solid Solution Crystals CaF2–SrF2–YbF3. OPTICS AND SPECTROSCOPY (2020) Vol.128 No.5 p.600-604
DOI:10.1134/S0030400X20050185
Simultaneous measurement of the emission quantum yield and local temperature: The illustrative example of SrF2:Yb3+/Er3+ single crystals / European Journal of Inorganic Chemistry. 2020. v.2020, is.17. 1555–1561
https://doi.org/10.1002/ejic.202000381
Optimization of upconversion luminescence excitation mode for deeper in vivo bioimaging without contrast loss or overheating // Methods Appl. Fluoresc. 8 (2020) 025006
doi.org/10.1088/2050-6120/ab7782
Upconversion properties of SrF2:Yb3+,Er3+ single crystals // J. Mater. Chem. C, 2020, 8, 4093-4101.
DOI:10.1039/C9TC06591A
Luminescent thermometry based on Ba4Y3F17:Pr3+ and Ba4Y3F17:Pr3+,Yb3+ nanoparticles // Ceramics International. 46 (2020) 11658–11666 https://doi.org/10.1016/j.ceramint.2020.01.19
https://doi.org/10.1016/j.ceramint.2020.01.196
Diamond-rare earth composites with embedded NaGdF4: Eu nanoparticles as robust photo- and X-ray luminescent materials for photonics // ACS Appl. Nano Mater. 2020, 3, 1324-1331
doi.org/10.1021/acsanm.9b02175
Phase diagrams of the Li2SO4-Na2SO4 system / Journal of American ceramic society. 2020. v.103, is.5, p.3390-3400
DOI:10.1111/jace.16996
Study of energy transfer processes between rare earth ions and photosensitizer molecules for photodynamic therapy with IR-excitation. Biomedical Photonics. 2021, 10(4):23-34. (In Russ.)
https://doi.org/10.24931/2413-9432-2021-10-4-23-34
Dispersibility of freeze-drying unmodified and modified TEMPO-oxidized cellulose nanofibrils in organic solvents. // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2021, 12 (6), P. 763-772.
DOI:10.17586/2220-8054-2021-12-6-763-772
Investigation of the deposition of calcium fluoride nanoparticles on the chips of CaF2 single crystals. Condensed Matter and Interphases. 2021;23(4): 607–613
DOI:10.17308/kcmf.2021.23/3681
The influence of the Sc3+ dopant on the transmittance of (Y,Er)3Al5O12 ceramics. Dalton Transactions, 2021, 50, 14252 - 14256.
doi.org/ 10.1039/D1DT02419A
Harvesting sub-bandgap photons via up-conversion for perovskite solar cells. ACS Applied Materials & Interfaces. 2021, 13, 46, 54874–54883
DOI:10.1021/acsami.1c13477
The Effect of Environment pH on Surface Photoluminescence of Oxidized Nanodiamonds. J. Phys. Chem. C 2021, 2021, 125, 33, 18247–18258
doi.org/10.1021/acs.jpcc.1c03331
Study of stability of luminescence intensity of β-NaGdF4: Yb: Er nanoparticle colloids in aqueous solution. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2021, 12 (2), P. 218–223
DOI:10.17586/2220-8054-2021-12-2-218-223
Thermal conductivity of single crystals of SrF2 - BaF2 solid solution // Inorg. mater. 2021 Vol. 57, No. 6, pp. 629–633.
DOI:10.1134/S002016852106008X
Growth and physical properties of CaSrBaF6 single crystals. Condensed Matter and Interphases, 2021, 23(1), 101–107
DOI:10.17308/kcmf.2021.23/3310
Effect of Yb3+ and Er3+ concentration on upconversion luminescence of co-doped BaF2 single crystals. Journal of Materials Chemistry C, 2021, 9, 3493 – 3503
X-ray luminescence of diamond composite films containing yttrium-aluminum garnet nanoparticles with varied composition of Sc-Ce doping. Ceramics International. 2021. v.47, is.10, part A, p.13922-13926.
doi.org/10.1016/j.ceramint.2021.01.259
The scandium impact on the sintering of YSAG:Yb ceramics with high optical transmittance. Ceramics International 47 (2021) 1772–1784
10.1016/j.ceramint.2020.09.003.
Diamond composite with embedded YAG:Ce nanoparticles as the fast source of X-ray luminescence in visible and near-IR range. Carbon 174 (2021) p.52-58.
https://doi.org/10.1016/j.carbon.2020.12.020
Культура и мышьяк. Химия и жизнь. 2023. № 9. С. 48-49.
ТЕПЛОПРОВОДНОСТЬ МОНОКРИСТАЛЛОВ ТВЕРДЫХ РАСТВОРОВ СИСТЕМЫ CaF2–SrF2–BaF2–YbF3 НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ, 2023, том 59, № 5
https://doi.org/10.31857/S0002337X23050135
Phase Transition in a Tetraaniline/Nanosilicon Composite Film Detected by Impedance Spectroscopy // J. Phys. Chem. C - 2023 – V. 127. – P. 17063−17077
https://doi.org/10.1021/acs.jpcc.3c02466
Positive and negative magnetoresistance and charge transport anisotropy in RB12 (R - Ho, Er, Tm) antiferromagnets with dynamic charge stripes. // Solid State Sciences 142 - 2023 – V. 142 - 107232.
DOI:10.1016/j.solidstatesciences.2023.107232
Optical Properties of Fluorozirconate Glasses Doped with Chromium Ions // Russian Journal of Inorganic Chemistry. – 2023. – V. 68. – No. 8. – P. 1096–1101
Influence of xenon difluoride on the optical properties of fluorozirconate and fluorohafnate glasses. // Mendeleev Commun. ‑ 2023. – V. 33. – P. 525–527
DOI: 10.1016/j.mencom.2023.06.027
Synthesis of Microstructures of Hexagonal Boron Nitride in Gyrotron Discharge in Metal–Dielectric Powder Mixtures. High Energy Chemistry, 2023, Vol. 57, Suppl. 1, pp. S53–S56
DOI: 10.1134/S0018143923070111
КОРРЕЛЯЦИЯ МЕЖДУ ХИМИЧЕСКИМ СОСТАВОМ И ТЕМПЕРАТУРОЙ КЮРИ НИКЕЛЬ-КОБАЛЬТОВОГО ФЕРРИТА. Журнал структурной химии. 2023. Т.64, №9, 117238.
https://jsc.niic.nsc.ru/article/117238
Synthesis of Ca1–x–yYbxEryF2+x+y Upconversion Powders for the Preparation of Optical Ceramics / Journal of Structural Chemistry. 2023. V. 64 (9). P. 1733–1742.
DOI:10.1134/S0022476623090160
Optical properties of non-stoichiometric YAG: Ce luminescent ceramics. Optical materials. (2023). v.143. #114231
DOI:10.2139/ssrn.4431704
Fabrication and Optical Properties of YSAG:Cr Optical Ceramics. Ceramics International. 2023. V.49, Is.19, P. 32127-32135
https://doi.org/10.1016/j.ceramint.2023.07.181
Fabrication and optical properties of garnet ceramics based on Y3-xScxAl5O12 doped with ytterbium and erbium. Dalton Transactions, 2023, 52, p.11285-11296.
DOI:10.1039/D3DT01453C
Оптические и лазерные характеристики Yb: YSAG керамики. Оптика и спектроскопия. 2023. Т.131. вып.5. с.597-603
DOI:10.21883/OS.2023.05.55710.68-22
Оптическая спектроскопия ионов Er3+ в кристаллах BaY1,8Lu0,2F8. Оптика и спектроскопия. 2023. Т.131. вып.5. с.583-588.
DOI:10.21883/OS.2023.05.55708.61-22
Laser Ablation-Generated Crystalline Selenium Nanoparticles Prevent Damage of DNA and Proteins Induced by Reactive Oxygen Species and Protect Mice against Injuries Caused by Radiation-Induced Oxidative Stress // Materials - 2023 - V. 16 - 5164.
https://doi.org/10.3390/ma16145164
Cubic-phase NaYF4:Pr3+,Yb3+ down-conversion phosphors for optical temperature sensing. Solid State Communications 370 (2023) 115235
https://doi.org/10.1016/j.ssc.2023.115235
Infrared to visible up-conversion luminescence of SrF2:Ho particles upon excitation of the 5I7 level of Ho3+ ions. Journal of Luminescence, 2023, v.261. 119942
doi.org/10.1016/j.jlumin.2023.119942.
The ACCESS Collaboration. Array of cryogenic calorimeters to evaluate the spectral shape of forbidden β-decays: the ACCESS project. Eur. Phys. J. Plus (2023) v.138, article number 445
https://doi.org/10.1140/epjp/s13360-023-03946-x
Novel Fluoride Matrix for Dual-Range Optical Sensors and Visualization // Appl. Sci. 2023, 13, 9999.
https://doi.org/10.3390/app13189999
Hall Effect Anisotropy in the Paramagnetic Phase of Ho0.8Lu0.2B12 Induced by Dynamic Charge Stripes // Molecules. – 2023. – V. 28. – P. 676.
DOI:10.3390/molecules28020676
Laser synthesis of ruby and its nanoparticles for photo-conversion of solar spectrum // Laser Phys. Lett. – 2023. – V. 20. P. 046001 (7pp).
DOI:10.1088/1612-202X/acb708
Synthesis of Polycrystalline Diamond Films in Microwave Plasma at Ultrahigh Concentrations of Methane // coatings. - 2023. - V. 13. - P. 751.
https://doi.org/10.3390/coatings13040751
Фазовые диаграммы систем диоксида циркония с оксидами иттрия и скандия // КСМГ. – 2023. – Т.25. - № 2. - С. 257–267.
https://doi.org/10.17308/kcmf.2023.25/11106
Low-temperature phase formation in the BaF2-LaF3 system // Inorganic Materials. 2023. V. 59. № 3. P. 295-305.
DOI:10.1134/S0020168523030019
Optical properties of LiGdF4 single crystal in the terahertz and infrared ranges // Photonics. – 2023. - V. 10. - # 84 (12 pp.).
https://doi.org/10.3390/photonics10010084
Низкотемпературные фазовые равновесия в бинарных системах и получение функциональных материалов // Труды Кольского научного центра РАН. Серия технические науки. - 2023. - Т. 14. - № 4. - С. 125-128.
https://doi.org/10.37614/2949-1215.2023.14.4.021
Transformation of siderite in the zone of hypergenesis.// Nanosystems: Phys. Chem. Math., 2022, 13 (5), 539–545.
DOI:10.17586/2220-8054-2022-13-5-539-545
Judd-Ofelt Analysis of High Erbium Content Yttrium-Aluminum and Yttrium-Scandium-Aluminum Garnet Ceramics. Inorganics 2022, 10, 170.
https://doi.org/10.3390/inorganics10100170
Stable garnets in the Er2O3-Sc2O3-Al2O3 oxide system for optical ceramics application. Ceramics International. 2022. V.48. is.24. p.p.36739-36747.
doi.org/10.1016/j.ceramint.2022.08.235
Impact of sensitizer Yb and activator Tm on luminescence intensity of β-NaYF4:Yb/Tm Nanoluminophores. Nanosystems:Phys. Chem. Math., 2022, 13 (3), 331-341
DOI:10.17586/2220-8054-2022-13-3-331-341
"Spectroscopy properties of Dy3+ doped CaF2 single crystals and CaF2-SrF2 solid liquid," 2022 International Conference Laser Optics (ICLO), 2022, pp. 1-1,
DOI:10.1109/ICLO54117.2022.9840327
SYNTHESIS OF SINGLE-PHASE Sr1-xBaxF2 SOLID SOLUTIONS BY COPRECIPITATION FROM AQUEOUS SOLUTIONS Solid State Sciences. 2022, v.130:106932
DOI:10.1016/j.solidstatesciences.2022.106932
Influence of the intensity of exciting radiation on the luminescent properties of nanopowders NaYF4:Yb/Tm. Optics and Spectroscopy, 2022, Vol. 130, No. 6, p.655-662.
DOI:10.21883/EOS.2022.06.54700.38-22
Interaction of Calcium and Strontium Carbonates with KF Solutions Russian Journal of Inorganic Chemistry, 2022, Vol. 67, No. 8, pp 1211–1220
DOI:10.1134/S0036023622080101
Luminescent diamond composites, Functional Diamond, 2022. 2:1, 53-63
DOI:10.1080/26941112.2022.2071112
Sodium Sulfate Polymorphism. Russian Journal of Inorganic Chemistry, 2022, Vol. 67, No. 7, pp. 970–977.
DOI:10.1134/S0036023622070208
Long-wavelength optical properties of the Ca0.33Sr0.33Ba0.33F2 solid solution single crystals. // Optical Materials. 2022. v.127. 112267.
DOI.10.1016/j.optmat.2022.112267
Thermal Conductivity of Single Crystals of CaF2–BaF2 Solid Solutions. Inorganic Materials, 2022, Vol. 58, No. 4, pp. 396–402
DOI:10.1134/S0020168522040136
Study of synthesis temperature effect on β-NaGdF4: Yb3+, Er3+ upconversion luminescence efficiency and decay time using maximum entropy method. Methods and Applications in Fluorescence. 2022. V.10. P.024005
Doi. 10.1088/2050-6120/ac5bdc
Assessment of Cs2HfCl6 crystals applicability as low-temperature scintillating bolometers by their thermodynamic characteristics. Journal of Mater Chem C 2022. 10, 5218 - 5229
doi. 10.1039/D1TC06166F
Fabrication and characterization of new Er-doped yttrium-scandium-aluminum garnet ceramics. 15-30 January 2022 Chem. Proc. 2022, 9, 18.
https://doi.org/10.3390/IOCC_2022-12163
Cerium-doped gadolinium-scandium-aluminum garnet powders: synthesis and use in X-ray luminescent diamond composites. Ceramics International. 2022. V.48, p.12962-12970.
10.1016/j.ceramint.2022.01.169
Sintering and microstructure evolution of Er1.5Y1.5-xScx+yAl5-yO12 garnet ceramics with scandium in dodecahedral and octahedral sites. Journal of the European Ceramic Society.2022.v.42, is.5, p.2464-2477
10.1016/j.jeurceramsoc.2022.01.008
Synthesis of YSAG:Er ceramics and the study of the scandium impact in the dodecahedral and octahedral garnet sites on the Er3+ energy structure. Journal of Luminescence 241 (2022) 118539
doi.org/10.1016/j.jlumin.2021.118539
Люминесцентные свойства индивидуальных центров “кремний-вакансия” в CVD наноалмазах, выращенных на различных подложках. Оптика и спектроскопия. 2023. Т.131. вып.2. с.233-237.
DOI:10.21883/OS.2023.02.55012.21-23
Ап-конверсионная люминесценция твердых растворов CaF2-SrF2-HoF3 при возбуждении на уровень 5I7 ионов Ho3+. Оптика и спектроскопия. 2023, т.131, вып.3, стр.346-353
DOI: 10.21883/OS.2023.03.55384.4085-22
Influence of accidental impurities on the spectroscopic and luminescent properties of ZnWO4 crystal. Materials 2023, 16, 2611.эо
https://doi.org/10.3390/ma16072611
Получение и характеризация порошков фторида стронция, активированного фторидом неодима. Научно-технический вестник информационных технологий, механики и оптики. 15 (2015) 578–586.
https://doi.org/10.17586/2226-1494-2015-15-4-578-586
Синтез ап-конверсионных люминофоров на основе фторида стронция, легированного Ho3+ и Er3+ для визуализаторов двухмикронного излучения // Конденсированные среды и межфазные границы. 18 (2016) 408–413.
https://journals.vsu.ru/kcmf/article/view/150
Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization // Laser. Phys. 26 (2016) 084001
http://dx.doi.org/10.1088/1054-660X/26/8/084001
Efficient visible range SrF2:Yb:Er- and SrF2:Yb:Tm-based upconversion luminophores // J. Fluor. Chem. 194 (2017) 6–22.
https://doi.org/10.1016/j.jfluchem.2016.12.002
Synthesis of СаF2-YF3 nanopowders by co-precipitation from aqueos solutions // Nanosystems: Physics, Chemistry, Mathematics. 8 (2017) 462–470.
https://doi.org/10.17586/2220-8054-2017-8-4-462-470
Синтез и характеризация порошков SrF2:Yb:Tm // Конденсированные среды и межфазные границы. 9 (2017) 57-67.
https://doi.org/10.17308/kcmf.2017.19/177
Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders under excitation by infrared laser // Laser Phys. Lett. 14 (2017) 076003
https://doi.org/10.1088/1612-202X/aa7418
Preparation of nanodispersed fluorite-type Sr1-xRxF2+x (R = Er, Yb, Ho) phases from citrate solutions // J. Fluor. Chem. 194 (2017) 8–15.
https://doi.org/10.1016/j.jfluchem.2016.12.003
Algorithm for calculation of up-conversion luminophores mixtures chromaticity coordinates // J. Fluor. Chem. 237 (2020) 109607
https://doi.org/10.1016/j.jfluchem.2020.109607
Synthesis of SrF2:Yb:Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH4F // Dalton Transactions. 51 (2022) 5448
https://doi.org/10.1039/d2dt00304j
Effect of up-converting luminescent nanoparticles with increased quantum yield incorporated into the fluoropolymer matrix on solanum lycopersicum growth // Agronomy. 12 (2022) 108.
https://doi.org/10.3390/agronomy12010108
Features of Ca1-xYxF2+x solid solution heat capacity behavior: diffuse phase transition / Nanosystems: Phys. Chem. Math., 2023, 14 (2), 279–285
DOI:10.17586/2220-8054-2023-14-2-279-285
Thermal Stability of LiRF4 (R = Gd, Tb) Compaunds. Cryst. Res. Tech. 2023. 2200251
DOI:10.1002/crat.202200251
High lignin content cellulose nanofibrils obtained from thermomechanical pulp. / Nanosystems: Phys. Chem. Math., 2022, 13 (6), 698–708.
DOI:10.17586/2220-8054-2022-13-6-698-708
Age‑related changes in cationic compositions of human cranial base bone apatite measured by X‑ray energy dispersive spectroscopy (EDS) coupled with scanning electron microscope (SEM). BioMetals. 2022, 35, рр. 1077-1094
https://doi.org/10.1007/s10534-022-00425-1
Synthesis of solid solution Ba1-xLaxF2+x from nitrate melt // Russ. J. Inorg. Chem. 2022. V.67. I. 6. P. 861-867.
DOI:10.1134/S0036023622060079
Cultivation of Solanum lycopersicum under Glass Coated with Nanosized Upconversion Luminophore. Appl. Sci. 2021, 11(22), 10726
https://doi.org/10.3390/app112210726
Effect of Structural Perfection of Crystalline β-NaYF4:Yb,Er Phosphor Powders on the Efficiency of Their Upconversion Luminescence. Inorganic Materials. 58, 90–96 (2022)
DOI:10.1134/S0020168522010010
Preparation and X-ray luminescence of Ba4±xCe3±xF17±x solid solutions. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2021, 12 (4), P. 505–511.
https://doi.org/10.17586/2220-8054-2021-12-4-505-511
Synthesis of Calcium Fluoride Nanoparticles in a Microreactor with Intensely Swirling Flows. Russian Journal of Inorganic Chemistry, 2021, Vol. 66, No. 7, pp. 1047–1052.
DOI:10.1134/S0036023621070020
Transformation of calcite CaCO3 to fluorite CaF2 by action of KF solution. J. Fluor. Chem. 2021. V. 251. 109898
https://doi.org/10.1016/j.jfluchem.2021.109898
Low‐temperature phase formation in the SrF2–LaF3 system. J. Am. Ceram. Soc. 2021. 17666.
https://doi.org/10.1111/jace.17666
Optical fluoride nanoceramics / Inorganic Materials. 2021. V. 57. I 6. P. 555-578.
DOI:10.1134/S0020168521060078
Synthesis of NaYF4:Yb, Er up-conversion luminophore from nitrate flux. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2020, 11 (4), P. 417–423
DOI:10.17586/2220-8054-2020-11-4-417-423
Comment on the paper “Thermodynamic evaluation and optimization of the (NaNO3 + KNO3 + Na2SO + K2SO4) system” by Ch. Robelin, P. Chartrand, A.D. Pelton, published in J. Chem. Therm. 83 (2015) 12-26. The Journal of Chemical Thermodynamics. – 2020. – V. 149
DOI:10.1016/j.jct.2020.106178
Synthesis of calcium and strontium fluorides using Li2SO4–Na2SO4 eutectic melts. Russian Journal of Inorganic Chemistry. 2020. V. 65. I 6. P. 834-838.
DOI:10.1134/S0036023620060169
Synthesis of Upconversion Luminophores Based on Calcium Fluoride. Condensed Matter and Interphases, 2020, 22(1), 3–10
http://doi.org/10.17308/kcmf.2020.22/2524
Synthesis of inorganic fluorides in molten salt fluxes and ionic liquid mediums. / J. Fluorine Chem. – 2019. – V. 227. – 109374.
http://doi.org/10.1016/j.jfluchem.2019.109374
Получение наночастиц MgO. // Неорганические материалы.
Получение нанопорошков твердых растворов M1-xRxF2+x (M=Ca, Sr, Ba; R=Ce, Nd, Er, Yb). //Ж. неорг. химии. 2007. № 3. т. 52. С.364-369.
Теплопроводность монокристаллов гетеровалентных твердых растворов фторидов иттербия и празеодима во фториде кальция. // Конденсированные среды и межфазные границы
Inorganic nanofluorides and related nanocomposites. Russian Chem. Rev.
https://doi.org/10.1070/RC2006v075n12ABEH003637
Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals. // Quantum Electronics.
https://doi10.1070/QE200v036n07ABEH013178
Синтез порошков ортоборатов скандия. // Неорган. материалы
BaO-BaB2O4 phase systems // Russian journal of inorganic chemistry
Исследование гидратация хлорида стронция и оксихлоридов редкоземельных элементов. // Ж. прикладной химии.
Синтез нанокристаллического ортобората индия методом боратной перегруппировки.// Ж. неорг. химии
Выращивание объемных кристаллов β-BaB2O4. высокого оптического качества в системе BaB2O4 - NaBaBO3 // Неорг. матер.
DOI:10.1007/s10789-005-0082-4
Новый ортоборат натрия-бария NaBa4(BO3)3 // Ж. неорган. химии
Upconversion microparticles as time-resolved luminescent probes for multiphoton microscopy: desired signal extraction from the streaking effect. J. Biomed. Opt.
https://doi.org/10.1117/1.JBO.21.9.096002
Preparation and properties of methylcellulose/nanocellulose/СаF2:Но polymer-inorganic composite films for two-micron radiation visualizers. Journal of Fluorine Chemistry
https://doi.org/10.1016/j.jfluchem.2017.08.012
Up-conversion Quantum Yield of SrF2:Yb3+,Er3+ Sub-micron Particles Prepared by Precipitation from Aqueous Solution. Journal of Materials Chemistry C. 2018,6, 598-604
https://doi.org/10.1039/C7TC04913G
Infrared-to-visible upconversion luminescence in SrF2:Er powders upon excitation of the 4I13/2 level. Optical Materials Express. 2018. v.8. #7. p. 1863-1869
https://doi.org/10.1364/OME.8.001863
Synthesis and down-conversion luminescence investigation of CaF2:Yb:Ce powders for photonics. Journal of Fluorine Chemistry.
https://doi.org/10.1016/j.jfluchem.2019.04.010
Temperature-related changes in the structure of YSAG:Yb garnet solid solutions with the high Sc3+ concentration. Journal of the European Ceramic Society
https://doi.org/10.1016/j.jeurceramsoc.2019.07.041
Indium Iodide Single Crystal – Breakthrough Material for Infrared Acousto-Optics. Optics Letters
https://doi.org/10.1364/OL.393737
Electrical Conductivity of Sodium Sulfate-Based Phases. Inorganic Materials, 2022, Vol. 58, No. 8, pp. 806–813
https://doi.org/10.1134/S0020168522080118
Plant photochemistry under glass coated with up-conversion luminescent film. Appl. Sci. 2022, 12, 7480.
https://doi.org/10.3390/app12157480
Laser damage threshold of hydrophobic up-conversion carboxylated nanocellulose/SrF2:Hо composite films functionalized with 3-aminopropyltriethoxysilane. Cellulose
DOI:10.21203/rs.3.rs-461271/v1
Effect of vacuum sintering conditions on the properties of Y3Al5O12: Ce luminescent ceramics. Modern Electronic Materials 2022; 8(3): 123–130.
https://doi.org/10.3897/j.moem.8.3.98706
Comparison of quantum yield of upconversion nanocrystals determined by absolute and relative methods. Advanced Photonics Research. 2023, 4, 2200187.
https://doi.org/10.1002/adpr.202200187
The influence of Medium on Fluorescence Quenching of Colloidal Solutions of the Nd3+:LaF3 Nanoparticles Prepared with HTMW Treatment. Nanomaterials. 2022, 12, 3749.
10.3390/nano12213749
Synthesis of Y3Al5O12:Ce powders for X-ray luminescent diamond composites. Inorganics, 2022, 10, 240.
10.3390/inorganics10120240