Публикации

Сбросить все фильтры
  1. Study of the spectral and kinetic characteristics of the Er3+ ion in BaY1.8Lu0.2F8 mixed crystals to assess the possibility of continuous laser oscillation at a wavelength of 2.7 μm 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russ
    10.1109/iclo59702.2024.10624501
  2. Highly dispersed anti-Stokes phosphors based on KGd2F7:Yb,Er single-phase solid solutions. Nanosystems: Phys. Chem. Math., 2024, 15 (5), 702–709
    DOI 10.17586/2220-8054-2024-15-5-702-709539. 
  3. Phase diagrams of the BaF2–NdF3 and BaF2–PrF3 systems / J. Am. Ceram. Soc. 2024
    https://doi.org/10.1111/jace.20152
  4. Structure and luminescence properties of EuF3 and SrF2:Eu nanoparticles after microwave plasma annealing in “methane–hydrogen”. Dalton Trans. 2024
    https://doi.org/10.1039/D4DT01664E
  5. Stabilization of the Ba4Y3F17 phase in the NaF-BaF2-YF3 system. Condensed Matter and Interphases. 2024; 26(2): 314–320
    https://doi.org/10.17308/kcmf.2024.26/11942
  6. X-ray luminescence of Sr0.925–xBaxEu0.075F2.075 nanopowders. Condensed Matter and Interphases. 2024;26(2): 247–252
    https://doi.org/10.17308/kcmf.2024.26/11937
  7. Fluorite solid solutions of Congruent Melting in the PbF2–CdF2–RF3 systems // Cryst. Rep. 2024, V.69(2), p.270-278
    10.1134/S1063774524600182
  8. Fluorite-like phases based on barium and rare earth fluorides. Journal of Structural Chemistry.
    https://doi.org/10.26902/JSC_id12684
  9. Numerical Model of Temperature-Dependent Thermal Conductivity in M1-xRxF2+x Heterovalent Solid Solution Nanocomposites, where M Stands for Alkaline-Earth Metals and R for Rare-Earth Metals // Nanosystems: Physics, Chemistry, Mathematics. 2024. V. 15(2) 25

  10. Thermophysical Characteristics of Single Crystals of Ba1–x–yYbxRyF2+x+y (R = Tm, Ho) Solid Solutions. Inorganic Materials, 2023, Vol. 59, No. 11, pp. 1267–1274.
    DOI: 10.1134/S0020168523110080
  11. Syntheses of strontium fluoride nanoparticles in a microreactor with intensely swirling flows // Nanosystems. 2024. V. 13. Nanosystems: Phys. Chem. Math., 2024, 15 (1), 115–121.
    DOI 10.17586/2220-8054-2024-15-1-115-121. 
  12. The Influence of Concentrations of Sensitizers and Activators on Luminescence Kinetics Parameters of Up-Conversion Nanocomplexes NaYF4:Yb3+/Tm3+. Photonics 2024, 11, 228.
    doi.org/10.3390/photonics11030228
  13. Synthesis of KGd2F7:Yb:Er Luminophores by Co-Precipitation from Aqueous Solutions. Journal of Structural Chemistry. 2024. V. 65, P.138–148.
    https://doi.org/10.1134/S002247662401013X
  14. Photo- and X-ray induced cytotoxicity of CeF3-YF3-TbF3 nanoparticle-polyvinylpyrrolidone –“Radachlorin” composites for combined photodynamic therapy. Materials 2024, 17, 316.
    https://doi.org/10.3390/ma17020316
  15. NaGdF4:Yb,Er,Tm upconversion nanoparticles for bioimaging in shortwave-infrared range: study of energy transfer processes and composition optimization. Photonics 2024, 11, 38
    10.3390/photonics11010038
  16. Optical spectroscopy of the Er3+ ions heavily doped BaY1.8Lu0.2F8 mixed crystals. Optical Materials 147 (2024) 114585 
    https://doi.org/10.1016/j.optmat.2023.114585
  17. Effect of the fluorinating agent type (NH4F, NaF, KF) on the particle size and emission properties of SrF2:Yb:Er luminophores // J. Mater. Chem. C. 2024.
    https://doi.org/10.1039/D3TC03926A
  18. X-ray luminescence of SrF2:Eu nanopowders // Opt. Spectrosc. – 2023. - V. 131(5). - P. 633-638
    DOI: 10.61011/EOS.2023.05.56516.58-22
  19. Phase Diagram of the MgF2–SrF2 System and Interactions of Magnesium and Strontium Fluorides with Other Fluorides / Russian Journal of Inorganic Chemistry, 2023, Vol. 68, No. 12, pp. 1789–1798
    https://doi.org/10.1134/S0036023623602325
  20. Nanofluorides. // J. Fluorine Chem. 2011. V.132. Is.12. P.1012-1039.
    DOI:10.1016/j.jfluchem.2011.06.025
  21. Nanostructure of Optical Fluoride Ceramics. // Inorganic Materials: Applied Research, V.2. (2) 2011. P.97-103.
    DOI:10.1134/S207511331102002X
  22. Coprecipitation from Aqueous Solutions to Prepare Binary Fluorides // Russian Journal of Inorganic Chemistry 2011.v.56.is.10. p.1525-1531.
    DOI:10.1134/S003602361110007X
  23. Coprecipitation of barium-bismuth fluorides from aqueous solutions: Nanochemical effects // Nanotechnologies in Russia. 2011. V. 6, Is. 3, pp 203-210
    DOI:10.1134/S1995078011020078
  24. Фазовые равновесия в системе Ba2Na3[B3O6]2F – BaF2. Кристаллография, 2010. Т.55. №5. С.928-932
    DOI:10.1134/S1063774510050305
  25. Spectral-kinetic characteristics of crystals and nanoceramics based on BaF2 and BaF2: Ce. Physics of the Solid State volume 52, pages1910–1914 (2010). 
    DOI:10.1134/S1063783410090209
  26. Synthesis of Ba4R3F17 (R stands for Rare-Earth Elements) Powders and Transparent Compacts on Their Base. // Russian Journal of Inorganic Chemistry. 2010. Vol.55. №4. pp.484-493.
    DOI:10.1134/S0036023610040029
  27. Исследование структуры и механизмов рассеяния фононов субтерагерцевых частот в монокристаллах и оптической керамике из фторида лития. // ЖЭТФ.2010.  Т.137 № 6, С. 1126-1132.

  28. Фазовые равновесия в системе BaB2O4-NaF.// Неорган. Матер. 2010. Т.46. №1. С. 77-80

  29. Optical absorption in CaF2 nanoceramics. // Quantum Electronics. 2009. Vol.39. (10). P.943-947.
    DOI:10.1070/QE2009V039N10ABEH014008
  30. Crystal growth and phase equilibria in the BaB2O4-NaF system. // Crystal growth and design. 2009. Vol.9. p. 4060-4063.
    DOI:10.1021/cg9002675
  31. A study of the transport of thermal acoustic phonons in CaF 2 single crystals and ceramics within the subterahertz frequency range. Doklady Physics. 2009. V. 54. № 1 P. 14-17.
    DOI:10.1134/S1028335809010042
  32. Thermal conductivity of single crystals of Sr1-xYbxF2+x solid solution.// Doklady Physics. 2008. V. 53. № 8. P. 413-415.
    DOI:10.1134/S1028335808080016
  33. Soft chemical synthesis of NaYF4 nanopowders. // Russian Journal of Inorganic Chemistry. 2008. Vol. 53. #11. pp.1681-1685.
    DOI:10.1134/S0036023608110028
  34. Efficient laser based CaF2-SrF2-YbF3 nanoceramics. // Optics Letters. 2008. Vol. 33. №5 P.521-523.
    DOI:10.1364/OL.33.000521
  35. Morphological stability of Solid-Liquid Interface during Melt Crystallization of M1-XRXF2+X Solid Solutions. // Inorganic Materials. 2008. Vol. 44, №13. P.1434-1458
    DOI:10.1134/S0020168508130037
  36. Thermal conductivity of single crystals of Ba1-XYbXF2+X. / Doklady Physics. 2008. Vol.53. №7. pp.353-355.
    DOI:10.1134/S1028335808070045
  37. Теплопроводность γ-облученных монокристаллов LiF. // Письма в ЖТФ. 2008. Т.34. Вып.16. С.48-52.
    DOI:10.1134/S1063785008080233
  38. Thermal conductivity of single crystals of Ca1-XYbXF2+X. / Doklady Physics. 2008. Vol.53. №4. pp.198-200.
    DOI:10.1134/S102833580804006X
  39. Наночастицы фторидов с возможностью ап-конверсии для применения в медицине. // Российский биотерапевтический журнал. 2012. Т.11. №2. С.45

  40. Морфологическая устойчивость фронта кристаллизации твердых растворов Ba1-xRxF2+x из расплава. // Конденсированные среды и межфазные границы. 2012. Т.14. №4. С.480-488.

  41. Особенности синтеза гидрофторида и фторида бария из нитратных растворов. // Наносистемы: физика, химия, математика. 2012. Т.3. №5. С.125-137.

  42. Synthesis and luminescent characteristics of submicron powdersd on the basis of sodium and yttrium fluorides doped with rare earth elements. // Nanotechnologies in Russia. 2012. V.7. №11-12. pp.615-628.
    DOI:10.1134/S1995078012060067
  43. Synthesis of ultrafine fluorite Sr1-xNdxF2+x powders / INORGANIC MATERIALS 2012 vol. 48 p. 531-538
    DOI: 10.1134/S002016851205010X
  44. Co-precipitation of yttrium and barium fluorides from aqueous solutions. // Materials Research Bulletin. 2012. V. 47. P.1794-1799.
    DOI:10.1016/j.materresbull.2012.03.027
  45. Fluoride laser nanoceramics. // Journal of Physics: Conference Series. V.345. (2012) 012017 P.1-21.
    DOI:10.1088/1742-6596/345/1/012017
  46. Dependence of quantum yield of up-conversion luminescence on the composition of fluorite-type solid solution NaY1-x-yYbxEryF4. // Nanosystems: physics, chemistry, mathematics. 2013. 4(5). P.648-656.

  47. CaF2:Yb laser ceramics. // Optical Materials. 2013. v.35. p.444-450.
    DOI:10.1016/j.optmat.2012.09.035
  48. Optical Lithium Fluoride Ceramics. // Doklady Physics, 2007, Vol.52, №12, pp.677-680
    DOI:10.1134/S1028335807120099
  49. Эффективная генерация кристаллов твердых растворов CaF2-SrF2:Yb3+ при диодной лазерной накачке. // Квантовая электроника, 2007, т.37, №10. С.934-937.
    DOI: https://doi.org/10.1070/QE2007v037n10ABEH013662
  50. Synthesis of SrF2-YF3 nanopowders by co-precipitation from aqueous solutions. // Mendeleev Communications. 2014. V.24. P.360-362.
    DOI: 10.1016/j.mencom.2014.11.017
  51. White light luminophores based on Yb3+/Er3+/Tm3+-coactivated strontium fluoride powders. // Materials Chemistry and Physics. 2014. V.148. is.1-2. P.201-207. 
    DOI:10.1016/j.matchemphys.2014.07.032
  52. Di- and Trivalent Ytterbium distributions along a melt-grown CaF2 crystal. // Inorganic Materials. 2014. V.50. №7. pp.733-737.
    DOI:10.1134/S0020168514070024
  53. Microstructure and scintillation characteristics of BaF2 ceramics. // Inorganic Materials. 2014. Vol.50. №7. pp.738-744.
    DOI:10.1134/S002016851407005X
  54. Soft Chemistry Synthesis of Powders in the BaF2–ScF3 System. // Russian Journal of Inorganic Chemistry. 2014. Vol. 59. No. 7. pp. 773–777
    DOI:10.1134/S003602361407016X
  55. Phase formation in LaF3-NaGdF4, NaGdF4-NaLuF4, and NaLuF4-NaYF4 systems: Synthesis of powders by co-precipitation from aqueous solutions. // J. of Fluorine Chemistry. 2014. 161. P.95-101.
    DOI:10.1016/j.jfluchem.2014.02.011
  56. Single-phase nanopowders of Sr0.85-xBaxEu0.15F2.15: Investigation of structure and X-ray luminescent properties // Ceramics International 49 (2023)  39189-39195
    DOI:10.1016/j.ceramint.2023.09.262
  57. Spectral and cathodoluminescence decay characteristics of the Ba1−xCexF2+x (x = 0.3–0.4) solid solution synthesized by precipitation from aqueous solutions and fusion // Photonics. 10 (2023) 1057
    DOI:10.3390/photonics10091057
  58. X-ray luminescence of BaF2:Ce3+ powders // Nanosystems: physics, chemistry, mathematics. 2014 V.5(6). P.752-756.

  59. Nucleation and growth of fluoride crystals by agglomeration of the nanoparticles // 2014. J. Crystal Growth. V.401. p.63-66.
    DOI:10.1010/j.jcrysgro.2013.12.069
  60. Effect of the pH on the formation of NaYF4:Yb:Er nanopowders by co-crystallization in presence of polyethyleneimine. // Journal of Fluorine Chemistry. 2014. V.158. p.60-64.
    DOI:10.1002/chin.201412012
  61. Formation of dissipative structures at hologram recording in CaF2 crystals with color centers. // 2015. Proc. of SPIE vol.9508 p.95080D-1 - 95080D-9.
    DOI:10.1117/12.2178477
  62. New Sr1-x-yRx(NH4)yF2+x-y (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride. Materials Chemistry Physics. 2016. v.172. p.150-157
    doi:10.1016/j.matchemphys.2016.01.055
  63. Elaboration of nanofluorides and ceramics for optical and laser applications./ Chapter in the book “Photonic & Electronic Properties of Fluoride Materials” Ed. A.Tressaud, K. Poeppelmeier, Print Book pp.7-31 2016
    http://doi.org/10.1016/B978-0-12-801639-8.00002-7
  64. Исследование синтеза и люминесцентных характеристик фторида кальция, легированного иттербием и эрбием, для биомедицинских приложений. // Конденсированные среды и межфазные границы. 2016. т.18. №4. с.478-484.
    https://istina.msu.ru/publications/article/41845621/
  65. Phase diagram of the NaF-CaF2 system and the electrical conductivity of a CaF2-based solid solution. // Russian Journal of Inorganic Chemistry. 2016. V.61. #11. Pp.1472-1478.
    DOI:10.1134/S003602361611005X
  66. Low-temperature phase formation in the BаF2-CeF3 system // J. Fluorine Chemistry, 2016. 187. p.33-39
    doi:10.1016/j.jfluchem.2016.05.008
  67. Irradiation Behavior of Ytterbium-Doped Calcium Fluoride Crystals and Ceramics Inorganic Materials, 2016, Vol. 52, No. 8, pp. 842–850.
    DOI:10.1134/S0020168516080033
  68. Luminescence of Ba1-xLaxF2+x:Ce3+ crystals // Doklady Physics 2016. V.61. №2. p. 50-54.
    DOI:10.1134/S1028335816020063
  69. Absorption and Luminescence Spectra of CeF3_Doped BaF2 Single Crystals and Nanoceramics // Inorganic Materials, 2016, V. 52, No. 2, p. 213–217. 
    DOI:10.1134/S0020168516020047
  70. α-NaYF4:Yb:Er@AlPc(C2O3)4 -Based efficient up-conversion luminophores capable to generate singlet oxygen under IR excitation // J Fluorine Chem. 2016. V.182. 104-108.
    doi: http://dx.doi.org/10.1016/j.jfluchem.2015.12.012
  71. Low temperature phase formation in the CaF2–HoF3 system. // Russ. J. Inorg. Chem. 62 (2017) p.1173–1176.
    DOI:10.1134/S0036023617090078
  72. Diamond-EuF3 nanocomposites with bright orange photoluminescence // Diamond and Related Materials. 2017. v.72. p.47-52.
    DOI:10.1016/j.diamond.2016.12.022
  73. Multifunctional upconversion nanoparticles based on NaYGdF4 for laser induced heating, non-contact temperature sensing and controlled hyperthermia with use of pulsed periodic laser excitation / Progress in Biomedical Optics and Imaging - Proceedings of SP
    DOI: 10.1117/12.2312484
  74. Mechanisms and absolute quantum yield of upconversion luminescence of fluoride phosphors / Chinese Optics Letters, Vol. 16, Issue 9, 091901 (2018)
    doi.org/10.3788/COL201816.091901
  75. Synthesis and quantum yield investigations of the Sr1-x-yPrxYbyF2+x+y luminophores for photonics // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2018, 9 (5), P. 663-668
    DOI:10.17586/2220-8054-2018-9-5-663-668
  76. РЕНТГЕНОЛЮМИНЕСЦЕНТНЫЕ КОМПОЗИТЫ НА ОСНОВЕ ПОЛИКРИСТАЛЛИЧЕСКОГО АЛМАЗА С ИНТЕГРИРОВАННЫМИ НАНОЧАСТИЦАМИ NaGdF4:Eu ДЛЯ ФОТОНИКИ.// Конденсированные среды и межфазные границы, 20(3).  С.424-431.
    DOI:10.17308/kcmf.2018.20/579
  77. Upconversion Luminescence of Fluoride Phosphors SrF2:Er,Yb under Laser Excitation at 1.5 μm // Optics and Spectroscopy, 2018, Vol. 125, No. 4, pp. 537–542.
    DOI:10.1134/S0030400X18100132
  78. Устойчивость фронта кристаллизации твердого раствора Ca1-xSrxF2  по отношению к концентрационному переохлаждению // Кристаллография. 2018. Т.63. №5, С.820-826.
    DOI:10.1134/S0023476118050107
  79. Synthesis and luminescence studies of CaF2:Yb:Pr solid solutions powders for photonics // Journal of Fluorine Chemistry. 2018. V.211. p.70-75.
    https://doi.org/10.1016/j.jfluchem.2018.04.008
  80. Ca1-x-yYbxPryF2+x+y solid solution powders as a promising materials for crystalline silicon solar energetics // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2018, 9 (2), P. 259–265.
    DOI:10.17586/2220-8054-2018-9-2-259-265
  81. The Melt of Sodium Nitrate as a Medium for the Synthesis of Fluorides // Inorganics. 6. 38. (2018). P.1-17
    10.3390/inorganics6020038
  82. Phase Equilibria in LiYF4–LiLuF4 System and Heat Conductivity of LiY1–xLuxF4 Single Crystals. // Russian Journal of Inorganic Chemistry, 2018, Vol. 63, No. 4, pp. 433–438.
    DOI:10.1134/S0036023618040162
  83. Synthesis and Luminescence Characteristics of LaF3:Yb:Er Powders Produced by Coprecipitation from Aqueous Solutions // Russian Journal of Inorganic Chemistry, 2018, Vol. 63, No. 3, pp. 293–302.
    DOI:10.1134/S0036023618030130
  84. Hydrophobization of up-conversion luminescent films based on nanocellulose/MF2:Ho particles (M = Sr, Ca) by acrylic resin // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2019, 10 (5), P. 585–598
    DOI:10.17586/2220-8054-2019-10-5-585-598
  85. Prospective visible laser active media based on disordered fluorite-type structure crystals / The European Physical Journal Conferences (IWQO-2019) 220, 03024 (2019) 
    https://doi.org/10.1051/epjconf/201922003024
  86. Upconversion luminescence of CaF2-SrF2-ErF3 single crystals upon 1.5 µm laser excitation / Journal of Physics: Conference Series. (SPbOPEN 2019)  2019. 1410. 012086
    DOI:10.1088/1742-6596/1410/1/012086
  87. Tunable upconversion luminescence of SrF2:Er,Tm phosphors. Journal of Physics: Conference Series (SPbOPEN 2019)  2019. 1410 012121
    DOI:10.1088/1742-6596/1410/1/012121
  88. Down-conversion luminescence of Ce-Yb ions in YF3 // Optical Materials, 2019. v.95. 109256.
    10.1016/j.optmat.2019.109256
  89. LUMINESCENCE OF GdF3:Pr:Yb AND YF3:Pr:Yb SOLID SOLUTIONS SYNTHESIZED BY CRYSTALLIZATION FROM THE MELT. // Journal of Applied Spectroscopy, 2019. Vol. 86, No. 5. p. 795-801 
    DOI:10.1007/s10812-019-00895-1
  90. Synthesis and Luminescence of Sr1–x–yYbxEuyF2+x+y Solid Solutions for Photonics // Inorganic Materials, 2019, Vol. 55, No. 10, pp. 1031–1038
    DOI:10.1134/S002016851910008X
  91. Synthesis and down-conversion luminescence of Ba4Y3F17:Yb:Pr solid solutions for photonics. // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2019, 10 (2), P. 190–198.
    DOI: 10.17586/2220-8054-2019-10-2-190-198
  92. Influence of Y–Gd ratio on phase formation and spectroscopic properties of NaGd0.8−xYxYb0.17Er0.03F4 solid solutions // Laser Phys. Lett. 16 (2019) 035604 (11pp)
    DOI:10.1088/1612-202X/ab00f9
  93. Composite up-conversion luminescent films containing a nanocellulose and SrF2:Ho particles // Cellulose 2019 (26), 2403-2423
    DOI:10.1007/s10570-018-2194-4
  94. Achieving high NIR-to-NIR conversion efficiency by optimization of Tm3+ content in Na(Gd,Yb)F4: Tm upconversion luminophores, Laser Physics Letters 2020. 17 125701
    doi.org/10.1088/1612-202X/abbede.
  95. Temperature sensing in the short-wave infrared spectral region using core-shell NaGdF4:Yb3+,Ho3+,Er3+@NaYF4 nanothermometers. Nanomaterials 2020, 10, 1992
    https://doi.org/10.3390/nano10101992
  96. Hydrophobic up-conversion carboxylated nanocellulose/fluoride phosphor composite films modified with alkyl ketene dimer. Carbohydrate polymers. Carbohydrate Polymers 250 (2020) 116866
    doi.org/10.1016/j.carbpol.2020.116866
  97. UV to IR down-conversion luminescence in novel Ba4Y3F17:Yb:Ce solar spectrum sensitizer for silicon solar cells Optical Materials, 2020 v.108 p.110185.
    https://doi.org/10.1016/j.optmat.2020.110185
  98. The Study of the Luminescence of Solid Solutions Based on Yttrium Fluoride Doped with Ytterbium and Europium for Photonics Condensed Matter and Interphases 2020, 22(2), 225–231
    https://doi.org/10.17308/kcmf.2020.22/2834
  99. Near infrared down-conversion luminescence of Ba4Y3F17:Yb3+:Eu3+ nanoparticles under ultraviolet excitation. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS. 2020. 11 (3), P. 316–323
    DOI:10.17586/2220-8054-2020-11-3-316-323
  100. Determining the Photophysical Parameters of NaGdF4:Eu Solid Solutions in Suspensions Using the Judd–Ofelt Theory JETP Letters, 2020, Vol. 111, No. 9, pp. 525–531.
    DOI:10.1134/S0021364020090064
  101. Thermophysical Properties of Single Crystals of CaF2–SrF2–RF3 (R = Ho, Pr) Fluorite Solid Solutions Inorganic Materials, 2020, Vol. 56, No. 9, pp. 975–981.
    DOI:10.1134/S0020168520090113
  102. Study of Yb3+ Optical Centers in Fluoride Solid Solution Crystals CaF2–SrF2–YbF3. OPTICS AND SPECTROSCOPY (2020) Vol.128 No.5 p.600-604
    DOI:10.1134/S0030400X20050185
  103. Simultaneous measurement of the emission quantum yield and local temperature: The illustrative example of SrF2:Yb3+/Er3+ single crystals / European Journal of Inorganic Chemistry. 2020. v.2020, is.17. 1555–1561
    https://doi.org/10.1002/ejic.202000381
  104. Optimization of upconversion luminescence excitation mode for deeper in vivo bioimaging without contrast loss or overheating // Methods Appl. Fluoresc. 8 (2020) 025006
    doi.org/10.1088/2050-6120/ab7782
  105. Upconversion properties of SrF2:Yb3+,Er3+ single crystals // J. Mater. Chem. C, 2020, 8, 4093-4101.
    DOI:10.1039/C9TC06591A
  106. Luminescent thermometry based on Ba4Y3F17:Pr3+ and Ba4Y3F17:Pr3+,Yb3+ nanoparticles // Ceramics International. 46 (2020) 11658–11666 https://doi.org/10.1016/j.ceramint.2020.01.19
    https://doi.org/10.1016/j.ceramint.2020.01.196
  107. Diamond-rare earth composites with embedded NaGdF4: Eu nanoparticles as robust photo- and X-ray luminescent materials for photonics // ACS Appl. Nano Mater. 2020, 3, 1324-1331
    doi.org/10.1021/acsanm.9b02175
  108. Investigation of the deposition of calcium fluoride nanoparticles on the chips of CaF2 single crystals. Condensed Matter and Interphases. 2021;23(4): 607–613
    DOI:10.17308/kcmf.2021.23/3681
  109. Study of stability of luminescence intensity of β-NaGdF4: Yb: Er nanoparticle colloids in aqueous solution. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2021, 12 (2), P. 218–223
    DOI:10.17586/2220-8054-2021-12-2-218-223
  110. Thermal conductivity of single crystals of SrF2 - BaF2 solid solution // Inorg. mater. 2021 Vol. 57, No. 6, pp. 629–633.
    DOI:10.1134/S002016852106008X
  111. Growth and physical properties of CaSrBaF6 single crystals. Condensed Matter and Interphases, 2021, 23(1), 101–107
    DOI:10.17308/kcmf.2021.23/3310
  112. Effect of Yb3+ and Er3+ concentration on upconversion luminescence of co-doped BaF2 single crystals. Journal of Materials Chemistry C, 2021, 9, 3493 – 3503

  113. ТЕПЛОПРОВОДНОСТЬ МОНОКРИСТАЛЛОВ ТВЕРДЫХ РАСТВОРОВ СИСТЕМЫ CaF2–SrF2–BaF2–YbF3 НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ, 2023, том 59, № 5
    https://doi.org/10.31857/S0002337X23050135
  114. Optical Properties of Fluorozirconate Glasses Doped with Chromium Ions // Russian Journal of Inorganic Chemistry. – 2023. – V. 68. – No. 8. – P. 1096–1101

  115. Influence of xenon difluoride on the optical properties of fluorozirconate and fluorohafnate glasses. // Mendeleev Commun. ‑ 2023. – V. 33. – P. 525–527
    DOI: 10.1016/j.mencom.2023.06.027
  116. Synthesis of Ca1–x–yYbxEryF2+x+y Upconversion Powders for the Preparation of Optical Ceramics / Journal of Structural Chemistry. 2023. V. 64 (9). P. 1733–1742.
    DOI:10.1134/S0022476623090160
  117. Оптическая спектроскопия ионов Er3+ в кристаллах BaY1,8Lu0,2F8. Оптика и спектроскопия. 2023. Т.131. вып.5. с.583-588.
    DOI:10.21883/OS.2023.05.55708.61-22
  118. Cubic-phase NaYF4:Pr3+,Yb3+ down-conversion phosphors for optical temperature sensing. Solid State Communications 370 (2023) 115235
    https://doi.org/10.1016/j.ssc.2023.115235
  119. Infrared to visible up-conversion luminescence of SrF2:Ho particles upon excitation of the 5I7 level of Ho3+ ions. Journal of Luminescence, 2023, v.261. 119942
    doi.org/10.1016/j.jlumin.2023.119942.
  120. Novel Fluoride Matrix for Dual-Range Optical Sensors and Visualization // Appl. Sci. 2023, 13, 9999.
    https://doi.org/10.3390/app13189999
  121. Low-temperature phase formation in the BaF2-LaF3 system // Inorganic Materials. 2023. V. 59. № 3. P. 295-305.
    DOI:10.1134/S0020168523030019
  122. Optical properties of LiGdF4 single crystal in the terahertz and infrared ranges // Photonics. – 2023. - V. 10. - # 84 (12 pp.).
    https://doi.org/10.3390/photonics10010084
  123. Низкотемпературные фазовые равновесия в бинарных системах и получение функциональных материалов // Труды Кольского научного центра РАН. Серия технические науки. - 2023. - Т. 14. - № 4. - С. 125-128.
    https://doi.org/10.37614/2949-1215.2023.14.4.021
  124. SYNTHESIS OF SINGLE-PHASE Sr1-xBaxF2 SOLID SOLUTIONS BY COPRECIPITATION FROM AQUEOUS SOLUTIONS Solid State Sciences. 2022, v.130:106932
    DOI:10.1016/j.solidstatesciences.2022.106932
  125. Influence of the intensity of exciting radiation on the luminescent properties of nanopowders NaYF4:Yb/Tm. Optics and Spectroscopy, 2022, Vol. 130, No. 6, p.655-662.
    DOI:10.21883/EOS.2022.06.54700.38-22
  126. Interaction of Calcium and Strontium Carbonates with KF Solutions Russian Journal of Inorganic Chemistry, 2022, Vol. 67, No. 8, pp 1211–1220
    DOI:10.1134/S0036023622080101
  127. Study of synthesis temperature effect on β-NaGdF4: Yb3+, Er3+ upconversion luminescence efficiency and decay time using maximum entropy method. Methods and Applications in Fluorescence. 2022. V.10. P.024005
    Doi. 10.1088/2050-6120/ac5bdc
  128. Ап-конверсионная люминесценция твердых растворов CaF2-SrF2-HoF3 при возбуждении на уровень 5I7 ионов Ho3+. Оптика и спектроскопия. 2023, т.131, вып.3, стр.346-353
    DOI: 10.21883/OS.2023.03.55384.4085-22
  129. Получение и характеризация порошков фторида стронция, активированного фторидом неодима. Научно-технический вестник информационных технологий, механики и оптики. 15 (2015) 578–586.
    https://doi.org/10.17586/2226-1494-2015-15-4-578-586
  130. Синтез ап-конверсионных люминофоров на основе фторида стронция, легированного Ho3+ и Er3+ для визуализаторов двухмикронного излучения // Конденсированные среды и межфазные границы. 18 (2016) 408–413.
    https://journals.vsu.ru/kcmf/article/view/150
  131. Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization // Laser. Phys. 26 (2016) 084001
    http://dx.doi.org/10.1088/1054-660X/26/8/084001
  132. Efficient visible range SrF2:Yb:Er- and SrF2:Yb:Tm-based upconversion luminophores // J. Fluor. Chem. 194 (2017) 6–22.
    https://doi.org/10.1016/j.jfluchem.2016.12.002
  133. Synthesis of СаF2-YF3 nanopowders by co-precipitation from aqueos solutions // Nanosystems: Physics, Chemistry, Mathematics. 8 (2017) 462–470.
    https://doi.org/10.17586/2220-8054-2017-8-4-462-470
  134. Синтез и характеризация порошков SrF2:Yb:Tm // Конденсированные среды и межфазные границы. 9 (2017) 57-67.
    https://doi.org/10.17308/kcmf.2017.19/177
  135. Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders under excitation by infrared laser // Laser Phys. Lett. 14 (2017) 076003
    https://doi.org/10.1088/1612-202X/aa7418
  136. Preparation of nanodispersed fluorite-type Sr1-xRxF2+x (R = Er, Yb, Ho) phases from citrate solutions // J. Fluor. Chem. 194 (2017) 8–15.
    https://doi.org/10.1016/j.jfluchem.2016.12.003
  137. Synthesis of SrF2:Yb:Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH4F // Dalton Transactions. 51 (2022) 5448
    https://doi.org/10.1039/d2dt00304j
  138. Features of Ca1-xYxF2+x solid solution heat capacity behavior: diffuse phase transition / Nanosystems: Phys. Chem. Math., 2023, 14 (2), 279–285
    DOI:10.17586/2220-8054-2023-14-2-279-285
  139. Thermal Stability of LiRF4 (R = Gd, Tb) Compaunds. Cryst. Res. Tech. 2023. 2200251
    DOI:10.1002/crat.202200251
  140. Synthesis of solid solution Ba1-xLaxF2+x from nitrate melt // Russ. J. Inorg. Chem. 2022. V.67. I. 6. P. 861-867.
    DOI:10.1134/S0036023622060079
  141. Cultivation of Solanum lycopersicum under Glass Coated with Nanosized Upconversion Luminophore. Appl. Sci. 2021, 11(22), 10726
    https://doi.org/10.3390/app112210726
  142. Effect of Structural Perfection of Crystalline β-NaYF4:Yb,Er Phosphor Powders on the Efficiency of Their Upconversion Luminescence. Inorganic Materials. 58, 90–96 (2022)
    DOI:10.1134/S0020168522010010
  143. Preparation and X-ray luminescence of Ba4±xCe3±xF17±x solid solutions. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2021, 12 (4), P. 505–511.
    https://doi.org/10.17586/2220-8054-2021-12-4-505-511
  144. Synthesis of Calcium Fluoride Nanoparticles in a Microreactor with Intensely Swirling Flows. Russian Journal of Inorganic Chemistry, 2021, Vol. 66, No. 7, pp. 1047–1052.
    DOI:10.1134/S0036023621070020
  145. Transformation of calcite CaCO3 to fluorite CaF2 by action of KF solution. J. Fluor. Chem. 2021. V. 251. 109898
    https://doi.org/10.1016/j.jfluchem.2021.109898
  146. Low‐temperature phase formation in the SrF2–LaF3 system. J. Am. Ceram. Soc. 2021. 17666.
    https://doi.org/10.1111/jace.17666
  147. Optical fluoride nanoceramics / Inorganic Materials. 2021. V. 57. I 6. P. 555-578.
    DOI:10.1134/S0020168521060078
  148. Synthesis of NaYF4:Yb, Er up-conversion luminophore from nitrate flux. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2020, 11 (4), P. 417–423
    DOI:10.17586/2220-8054-2020-11-4-417-423
  149. Synthesis of calcium and strontium fluorides using Li2SO4–Na2SO4 eutectic melts. Russian Journal of Inorganic Chemistry. 2020. V. 65. I 6. P. 834-838. 
    DOI:10.1134/S0036023620060169
  150. Synthesis of Upconversion Luminophores Based on Calcium Fluoride. Condensed Matter and Interphases, 2020, 22(1), 3–10
    http://doi.org/10.17308/kcmf.2020.22/2524
  151. Synthesis of inorganic fluorides in molten salt fluxes and ionic liquid mediums. / J. Fluorine Chem. – 2019. – V. 227. – 109374.
    http://doi.org/10.1016/j.jfluchem.2019.109374
  152. Получение нанопорошков твердых растворов M1-xRxF2+x (M=Ca, Sr, Ba; R=Ce, Nd, Er, Yb). //Ж. неорг. химии. 2007. № 3. т. 52. С.364-369.

  153. Теплопроводность монокристаллов гетеровалентных твердых растворов фторидов иттербия и празеодима во фториде кальция. // Конденсированные среды и межфазные границы

  154. Inorganic nanofluorides and related nanocomposites. Russian Chem. Rev.
    https://doi.org/10.1070/RC2006v075n12ABEH003637
  155. Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals. // Quantum Electronics.
    https://doi10.1070/QE200v036n07ABEH013178
  156. Upconversion microparticles as time-resolved luminescent probes for multiphoton microscopy: desired signal extraction from the streaking effect. J. Biomed. Opt.
    https://doi.org/10.1117/1.JBO.21.9.096002
  157. Preparation and properties of methylcellulose/nanocellulose/СаF2:Но polymer-inorganic composite films for two-micron radiation visualizers. Journal of Fluorine Chemistry
    https://doi.org/10.1016/j.jfluchem.2017.08.012
  158. Up-conversion Quantum Yield of SrF2:Yb3+,Er3+ Sub-micron Particles Prepared by Precipitation from Aqueous Solution. Journal of Materials Chemistry C. 2018,6, 598-604 
    https://doi.org/10.1039/C7TC04913G
  159. Infrared-to-visible upconversion luminescence in SrF2:Er powders upon excitation of the 4I13/2 level. Optical Materials Express. 2018. v.8. #7. p. 1863-1869
    https://doi.org/10.1364/OME.8.001863
  160. Synthesis and down-conversion luminescence investigation of CaF2:Yb:Ce powders for photonics. Journal of Fluorine Chemistry.
    https://doi.org/10.1016/j.jfluchem.2019.04.010
  161. Plant photochemistry under glass coated with up-conversion luminescent film. Appl. Sci. 2022, 12, 7480.
    https://doi.org/10.3390/app12157480  
  162. Laser damage threshold of hydrophobic up-conversion carboxylated nanocellulose/SrF2:Hо composite films functionalized with 3-aminopropyltriethoxysilane. Cellulose
    DOI:10.21203/rs.3.rs-461271/v1
  163. Comparison of quantum yield of upconversion nanocrystals determined by absolute and relative methods. Advanced Photonics Research. 2023, 4, 2200187.
    https://doi.org/10.1002/adpr.202200187
  164. The influence of Medium on Fluorescence Quenching of Colloidal Solutions of the Nd3+:LaF3 Nanoparticles Prepared with HTMW Treatment. Nanomaterials. 2022, 12, 3749.
    10.3390/nano12213749