Главная
История лаборатории
Наши возможности
Наши достижения
Сотрудники
Новости и события
Публикации
Партнеры
Фториды
Оксиды
Галогениды
Монокристаллы
Порошки
Керамика
Люминофоры
Лазеры
Алмазные композиты
Наноцеллюлозные пленки
Минералогия
Ап-конверсия
Патенты
Публикации
Сбросить все фильтры
2025
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
Study of the spectral and kinetic characteristics of the Er3+ ion in BaY1.8Lu0.2F8 mixed crystals to assess the possibility of continuous laser oscillation at a wavelength of 2.7 μm 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russ
10.1109/iclo59702.2024.10624501
Highly dispersed anti-Stokes phosphors based on KGd2F7:Yb,Er single-phase solid solutions. Nanosystems: Phys. Chem. Math., 2024, 15 (5), 702–709
DOI 10.17586/2220-8054-2024-15-5-702-709539.
Phase diagrams of the BaF2–NdF3 and BaF2–PrF3 systems / J. Am. Ceram. Soc. 2024
https://doi.org/10.1111/jace.20152
Structure and luminescence properties of EuF3 and SrF2:Eu nanoparticles after microwave plasma annealing in “methane–hydrogen”. Dalton Trans. 2024
https://doi.org/10.1039/D4DT01664E
Stabilization of the Ba4Y3F17 phase in the NaF-BaF2-YF3 system. Condensed Matter and Interphases. 2024; 26(2): 314–320
https://doi.org/10.17308/kcmf.2024.26/11942
X-ray luminescence of Sr0.925–xBaxEu0.075F2.075 nanopowders. Condensed Matter and Interphases. 2024;26(2): 247–252
https://doi.org/10.17308/kcmf.2024.26/11937
Fluorite solid solutions of Congruent Melting in the PbF2–CdF2–RF3 systems // Cryst. Rep. 2024, V.69(2), p.270-278
10.1134/S1063774524600182
Fluorite-like phases based on barium and rare earth fluorides. Journal of Structural Chemistry.
https://doi.org/10.26902/JSC_id12684
Numerical Model of Temperature-Dependent Thermal Conductivity in M1-xRxF2+x Heterovalent Solid Solution Nanocomposites, where M Stands for Alkaline-Earth Metals and R for Rare-Earth Metals // Nanosystems: Physics, Chemistry, Mathematics. 2024. V. 15(2) 25
Thermophysical Characteristics of Single Crystals of Ba1–x–yYbxRyF2+x+y (R = Tm, Ho) Solid Solutions. Inorganic Materials, 2023, Vol. 59, No. 11, pp. 1267–1274.
DOI: 10.1134/S0020168523110080
Syntheses of strontium fluoride nanoparticles in a microreactor with intensely swirling flows // Nanosystems. 2024. V. 13. Nanosystems: Phys. Chem. Math., 2024, 15 (1), 115–121.
DOI 10.17586/2220-8054-2024-15-1-115-121.
The Influence of Concentrations of Sensitizers and Activators on Luminescence Kinetics Parameters of Up-Conversion Nanocomplexes NaYF4:Yb3+/Tm3+. Photonics 2024, 11, 228.
doi.org/10.3390/photonics11030228
Synthesis of KGd2F7:Yb:Er Luminophores by Co-Precipitation from Aqueous Solutions. Journal of Structural Chemistry. 2024. V. 65, P.138–148.
https://doi.org/10.1134/S002247662401013X
Photo- and X-ray induced cytotoxicity of CeF3-YF3-TbF3 nanoparticle-polyvinylpyrrolidone –“Radachlorin” composites for combined photodynamic therapy. Materials 2024, 17, 316.
https://doi.org/10.3390/ma17020316
NaGdF4:Yb,Er,Tm upconversion nanoparticles for bioimaging in shortwave-infrared range: study of energy transfer processes and composition optimization. Photonics 2024, 11, 38
10.3390/photonics11010038
Optical spectroscopy of the Er3+ ions heavily doped BaY1.8Lu0.2F8 mixed crystals. Optical Materials 147 (2024) 114585
https://doi.org/10.1016/j.optmat.2023.114585
Effect of the fluorinating agent type (NH4F, NaF, KF) on the particle size and emission properties of SrF2:Yb:Er luminophores // J. Mater. Chem. C. 2024.
https://doi.org/10.1039/D3TC03926A
X-ray luminescence of SrF2:Eu nanopowders // Opt. Spectrosc. – 2023. - V. 131(5). - P. 633-638
DOI: 10.61011/EOS.2023.05.56516.58-22
Phase Diagram of the MgF2–SrF2 System and Interactions of Magnesium and Strontium Fluorides with Other Fluorides / Russian Journal of Inorganic Chemistry, 2023, Vol. 68, No. 12, pp. 1789–1798
https://doi.org/10.1134/S0036023623602325
Nanofluorides. // J. Fluorine Chem. 2011. V.132. Is.12. P.1012-1039.
DOI:10.1016/j.jfluchem.2011.06.025
Nanostructure of Optical Fluoride Ceramics. // Inorganic Materials: Applied Research, V.2. (2) 2011. P.97-103.
DOI:10.1134/S207511331102002X
Coprecipitation from Aqueous Solutions to Prepare Binary Fluorides // Russian Journal of Inorganic Chemistry 2011.v.56.is.10. p.1525-1531.
DOI:10.1134/S003602361110007X
Coprecipitation of barium-bismuth fluorides from aqueous solutions: Nanochemical effects // Nanotechnologies in Russia. 2011. V. 6, Is. 3, pp 203-210
DOI:10.1134/S1995078011020078
Фазовые равновесия в системе Ba2Na3[B3O6]2F – BaF2. Кристаллография, 2010. Т.55. №5. С.928-932
DOI:10.1134/S1063774510050305
Spectral-kinetic characteristics of crystals and nanoceramics based on BaF2 and BaF2: Ce. Physics of the Solid State volume 52, pages1910–1914 (2010).
DOI:10.1134/S1063783410090209
Synthesis of Ba4R3F17 (R stands for Rare-Earth Elements) Powders and Transparent Compacts on Their Base. // Russian Journal of Inorganic Chemistry. 2010. Vol.55. №4. pp.484-493.
DOI:10.1134/S0036023610040029
Исследование структуры и механизмов рассеяния фононов субтерагерцевых частот в монокристаллах и оптической керамике из фторида лития. // ЖЭТФ.2010. Т.137 № 6, С. 1126-1132.
Фазовые равновесия в системе BaB2O4-NaF.// Неорган. Матер. 2010. Т.46. №1. С. 77-80
Optical absorption in CaF2 nanoceramics. // Quantum Electronics. 2009. Vol.39. (10). P.943-947.
DOI:10.1070/QE2009V039N10ABEH014008
Crystal growth and phase equilibria in the BaB2O4-NaF system. // Crystal growth and design. 2009. Vol.9. p. 4060-4063.
DOI:10.1021/cg9002675
A study of the transport of thermal acoustic phonons in CaF 2 single crystals and ceramics within the subterahertz frequency range. Doklady Physics. 2009. V. 54. № 1 P. 14-17.
DOI:10.1134/S1028335809010042
Thermal conductivity of single crystals of Sr1-xYbxF2+x solid solution.// Doklady Physics. 2008. V. 53. № 8. P. 413-415.
DOI:10.1134/S1028335808080016
Soft chemical synthesis of NaYF4 nanopowders. // Russian Journal of Inorganic Chemistry. 2008. Vol. 53. #11. pp.1681-1685.
DOI:10.1134/S0036023608110028
Efficient laser based CaF2-SrF2-YbF3 nanoceramics. // Optics Letters. 2008. Vol. 33. №5 P.521-523.
DOI:10.1364/OL.33.000521
Morphological stability of Solid-Liquid Interface during Melt Crystallization of M1-XRXF2+X Solid Solutions. // Inorganic Materials. 2008. Vol. 44, №13. P.1434-1458
DOI:10.1134/S0020168508130037
Thermal conductivity of single crystals of Ba1-XYbXF2+X. / Doklady Physics. 2008. Vol.53. №7. pp.353-355.
DOI:10.1134/S1028335808070045
Теплопроводность γ-облученных монокристаллов LiF. // Письма в ЖТФ. 2008. Т.34. Вып.16. С.48-52.
DOI:10.1134/S1063785008080233
Thermal conductivity of single crystals of Ca1-XYbXF2+X. / Doklady Physics. 2008. Vol.53. №4. pp.198-200.
DOI:10.1134/S102833580804006X
Наночастицы фторидов с возможностью ап-конверсии для применения в медицине. // Российский биотерапевтический журнал. 2012. Т.11. №2. С.45
Морфологическая устойчивость фронта кристаллизации твердых растворов Ba1-xRxF2+x из расплава. // Конденсированные среды и межфазные границы. 2012. Т.14. №4. С.480-488.
Особенности синтеза гидрофторида и фторида бария из нитратных растворов. // Наносистемы: физика, химия, математика. 2012. Т.3. №5. С.125-137.
Synthesis and luminescent characteristics of submicron powdersd on the basis of sodium and yttrium fluorides doped with rare earth elements. // Nanotechnologies in Russia. 2012. V.7. №11-12. pp.615-628.
DOI:10.1134/S1995078012060067
Synthesis of ultrafine fluorite Sr1-xNdxF2+x powders / INORGANIC MATERIALS 2012 vol. 48 p. 531-538
DOI: 10.1134/S002016851205010X
Co-precipitation of yttrium and barium fluorides from aqueous solutions. // Materials Research Bulletin. 2012. V. 47. P.1794-1799.
DOI:10.1016/j.materresbull.2012.03.027
Fluoride laser nanoceramics. // Journal of Physics: Conference Series. V.345. (2012) 012017 P.1-21.
DOI:10.1088/1742-6596/345/1/012017
Dependence of quantum yield of up-conversion luminescence on the composition of fluorite-type solid solution NaY1-x-yYbxEryF4. // Nanosystems: physics, chemistry, mathematics. 2013. 4(5). P.648-656.
CaF2:Yb laser ceramics. // Optical Materials. 2013. v.35. p.444-450.
DOI:10.1016/j.optmat.2012.09.035
Optical Lithium Fluoride Ceramics. // Doklady Physics, 2007, Vol.52, №12, pp.677-680
DOI:10.1134/S1028335807120099
Эффективная генерация кристаллов твердых растворов CaF2-SrF2:Yb3+ при диодной лазерной накачке. // Квантовая электроника, 2007, т.37, №10. С.934-937.
DOI: https://doi.org/10.1070/QE2007v037n10ABEH013662
Synthesis of SrF2-YF3 nanopowders by co-precipitation from aqueous solutions. // Mendeleev Communications. 2014. V.24. P.360-362.
DOI: 10.1016/j.mencom.2014.11.017
White light luminophores based on Yb3+/Er3+/Tm3+-coactivated strontium fluoride powders. // Materials Chemistry and Physics. 2014. V.148. is.1-2. P.201-207.
DOI:10.1016/j.matchemphys.2014.07.032
Di- and Trivalent Ytterbium distributions along a melt-grown CaF2 crystal. // Inorganic Materials. 2014. V.50. №7. pp.733-737.
DOI:10.1134/S0020168514070024
Microstructure and scintillation characteristics of BaF2 ceramics. // Inorganic Materials. 2014. Vol.50. №7. pp.738-744.
DOI:10.1134/S002016851407005X
Soft Chemistry Synthesis of Powders in the BaF2–ScF3 System. // Russian Journal of Inorganic Chemistry. 2014. Vol. 59. No. 7. pp. 773–777
DOI:10.1134/S003602361407016X
Phase formation in LaF3-NaGdF4, NaGdF4-NaLuF4, and NaLuF4-NaYF4 systems: Synthesis of powders by co-precipitation from aqueous solutions. // J. of Fluorine Chemistry. 2014. 161. P.95-101.
DOI:10.1016/j.jfluchem.2014.02.011
Single-phase nanopowders of Sr0.85-xBaxEu0.15F2.15: Investigation of structure and X-ray luminescent properties // Ceramics International 49 (2023) 39189-39195
DOI:10.1016/j.ceramint.2023.09.262
Spectral and cathodoluminescence decay characteristics of the Ba1−xCexF2+x (x = 0.3–0.4) solid solution synthesized by precipitation from aqueous solutions and fusion // Photonics. 10 (2023) 1057
DOI:10.3390/photonics10091057
X-ray luminescence of BaF2:Ce3+ powders // Nanosystems: physics, chemistry, mathematics. 2014 V.5(6). P.752-756.
Nucleation and growth of fluoride crystals by agglomeration of the nanoparticles // 2014. J. Crystal Growth. V.401. p.63-66.
DOI:10.1010/j.jcrysgro.2013.12.069
Effect of the pH on the formation of NaYF4:Yb:Er nanopowders by co-crystallization in presence of polyethyleneimine. // Journal of Fluorine Chemistry. 2014. V.158. p.60-64.
DOI:10.1002/chin.201412012
Formation of dissipative structures at hologram recording in CaF2 crystals with color centers. // 2015. Proc. of SPIE vol.9508 p.95080D-1 - 95080D-9.
DOI:10.1117/12.2178477
New Sr1-x-yRx(NH4)yF2+x-y (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride. Materials Chemistry Physics. 2016. v.172. p.150-157
doi:10.1016/j.matchemphys.2016.01.055
Elaboration of nanofluorides and ceramics for optical and laser applications./ Chapter in the book “Photonic & Electronic Properties of Fluoride Materials” Ed. A.Tressaud, K. Poeppelmeier, Print Book pp.7-31 2016
http://doi.org/10.1016/B978-0-12-801639-8.00002-7
Исследование синтеза и люминесцентных характеристик фторида кальция, легированного иттербием и эрбием, для биомедицинских приложений. // Конденсированные среды и межфазные границы. 2016. т.18. №4. с.478-484.
https://istina.msu.ru/publications/article/41845621/
Phase diagram of the NaF-CaF2 system and the electrical conductivity of a CaF2-based solid solution. // Russian Journal of Inorganic Chemistry. 2016. V.61. #11. Pp.1472-1478.
DOI:10.1134/S003602361611005X
Low-temperature phase formation in the BаF2-CeF3 system // J. Fluorine Chemistry, 2016. 187. p.33-39
doi:10.1016/j.jfluchem.2016.05.008
Irradiation Behavior of Ytterbium-Doped Calcium Fluoride Crystals and Ceramics Inorganic Materials, 2016, Vol. 52, No. 8, pp. 842–850.
DOI:10.1134/S0020168516080033
Luminescence of Ba1-xLaxF2+x:Ce3+ crystals // Doklady Physics 2016. V.61. №2. p. 50-54.
DOI:10.1134/S1028335816020063
Absorption and Luminescence Spectra of CeF3_Doped BaF2 Single Crystals and Nanoceramics // Inorganic Materials, 2016, V. 52, No. 2, p. 213–217.
DOI:10.1134/S0020168516020047
α-NaYF4:Yb:Er@AlPc(C2O3)4 -Based efficient up-conversion luminophores capable to generate singlet oxygen under IR excitation // J Fluorine Chem. 2016. V.182. 104-108.
doi: http://dx.doi.org/10.1016/j.jfluchem.2015.12.012
Low temperature phase formation in the CaF2–HoF3 system. // Russ. J. Inorg. Chem. 62 (2017) p.1173–1176.
DOI:10.1134/S0036023617090078
Diamond-EuF3 nanocomposites with bright orange photoluminescence // Diamond and Related Materials. 2017. v.72. p.47-52.
DOI:10.1016/j.diamond.2016.12.022
Multifunctional upconversion nanoparticles based on NaYGdF4 for laser induced heating, non-contact temperature sensing and controlled hyperthermia with use of pulsed periodic laser excitation / Progress in Biomedical Optics and Imaging - Proceedings of SP
DOI: 10.1117/12.2312484
Mechanisms and absolute quantum yield of upconversion luminescence of fluoride phosphors / Chinese Optics Letters, Vol. 16, Issue 9, 091901 (2018)
doi.org/10.3788/COL201816.091901
Synthesis and quantum yield investigations of the Sr1-x-yPrxYbyF2+x+y luminophores for photonics // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2018, 9 (5), P. 663-668
DOI:10.17586/2220-8054-2018-9-5-663-668
РЕНТГЕНОЛЮМИНЕСЦЕНТНЫЕ КОМПОЗИТЫ НА ОСНОВЕ ПОЛИКРИСТАЛЛИЧЕСКОГО АЛМАЗА С ИНТЕГРИРОВАННЫМИ НАНОЧАСТИЦАМИ NaGdF4:Eu ДЛЯ ФОТОНИКИ.// Конденсированные среды и межфазные границы, 20(3). С.424-431.
DOI:10.17308/kcmf.2018.20/579
Upconversion Luminescence of Fluoride Phosphors SrF2:Er,Yb under Laser Excitation at 1.5 μm // Optics and Spectroscopy, 2018, Vol. 125, No. 4, pp. 537–542.
DOI:10.1134/S0030400X18100132
Устойчивость фронта кристаллизации твердого раствора Ca1-xSrxF2 по отношению к концентрационному переохлаждению // Кристаллография. 2018. Т.63. №5, С.820-826.
DOI:10.1134/S0023476118050107
Synthesis and luminescence studies of CaF2:Yb:Pr solid solutions powders for photonics // Journal of Fluorine Chemistry. 2018. V.211. p.70-75.
https://doi.org/10.1016/j.jfluchem.2018.04.008
Ca1-x-yYbxPryF2+x+y solid solution powders as a promising materials for crystalline silicon solar energetics // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2018, 9 (2), P. 259–265.
DOI:10.17586/2220-8054-2018-9-2-259-265
The Melt of Sodium Nitrate as a Medium for the Synthesis of Fluorides // Inorganics. 6. 38. (2018). P.1-17
10.3390/inorganics6020038
Phase Equilibria in LiYF4–LiLuF4 System and Heat Conductivity of LiY1–xLuxF4 Single Crystals. // Russian Journal of Inorganic Chemistry, 2018, Vol. 63, No. 4, pp. 433–438.
DOI:10.1134/S0036023618040162
Synthesis and Luminescence Characteristics of LaF3:Yb:Er Powders Produced by Coprecipitation from Aqueous Solutions // Russian Journal of Inorganic Chemistry, 2018, Vol. 63, No. 3, pp. 293–302.
DOI:10.1134/S0036023618030130
Hydrophobization of up-conversion luminescent films based on nanocellulose/MF2:Ho particles (M = Sr, Ca) by acrylic resin // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2019, 10 (5), P. 585–598
DOI:10.17586/2220-8054-2019-10-5-585-598
Prospective visible laser active media based on disordered fluorite-type structure crystals / The European Physical Journal Conferences (IWQO-2019) 220, 03024 (2019)
https://doi.org/10.1051/epjconf/201922003024
Upconversion luminescence of CaF2-SrF2-ErF3 single crystals upon 1.5 µm laser excitation / Journal of Physics: Conference Series. (SPbOPEN 2019) 2019. 1410. 012086
DOI:10.1088/1742-6596/1410/1/012086
Tunable upconversion luminescence of SrF2:Er,Tm phosphors. Journal of Physics: Conference Series (SPbOPEN 2019) 2019. 1410 012121
DOI:10.1088/1742-6596/1410/1/012121
Down-conversion luminescence of Ce-Yb ions in YF3 // Optical Materials, 2019. v.95. 109256.
10.1016/j.optmat.2019.109256
LUMINESCENCE OF GdF3:Pr:Yb AND YF3:Pr:Yb SOLID SOLUTIONS SYNTHESIZED BY CRYSTALLIZATION FROM THE MELT. // Journal of Applied Spectroscopy, 2019. Vol. 86, No. 5. p. 795-801
DOI:10.1007/s10812-019-00895-1
Synthesis and Luminescence of Sr1–x–yYbxEuyF2+x+y Solid Solutions for Photonics // Inorganic Materials, 2019, Vol. 55, No. 10, pp. 1031–1038
DOI:10.1134/S002016851910008X
Synthesis and down-conversion luminescence of Ba4Y3F17:Yb:Pr solid solutions for photonics. // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2019, 10 (2), P. 190–198.
DOI: 10.17586/2220-8054-2019-10-2-190-198
Influence of Y–Gd ratio on phase formation and spectroscopic properties of NaGd0.8−xYxYb0.17Er0.03F4 solid solutions // Laser Phys. Lett. 16 (2019) 035604 (11pp)
DOI:10.1088/1612-202X/ab00f9
Composite up-conversion luminescent films containing a nanocellulose and SrF2:Ho particles // Cellulose 2019 (26), 2403-2423
DOI:10.1007/s10570-018-2194-4
Achieving high NIR-to-NIR conversion efficiency by optimization of Tm3+ content in Na(Gd,Yb)F4: Tm upconversion luminophores, Laser Physics Letters 2020. 17 125701
doi.org/10.1088/1612-202X/abbede.
Temperature sensing in the short-wave infrared spectral region using core-shell NaGdF4:Yb3+,Ho3+,Er3+@NaYF4 nanothermometers. Nanomaterials 2020, 10, 1992
https://doi.org/10.3390/nano10101992
Hydrophobic up-conversion carboxylated nanocellulose/fluoride phosphor composite films modified with alkyl ketene dimer. Carbohydrate polymers. Carbohydrate Polymers 250 (2020) 116866
doi.org/10.1016/j.carbpol.2020.116866
UV to IR down-conversion luminescence in novel Ba4Y3F17:Yb:Ce solar spectrum sensitizer for silicon solar cells Optical Materials, 2020 v.108 p.110185.
https://doi.org/10.1016/j.optmat.2020.110185
The Study of the Luminescence of Solid Solutions Based on Yttrium Fluoride Doped with Ytterbium and Europium for Photonics Condensed Matter and Interphases 2020, 22(2), 225–231
https://doi.org/10.17308/kcmf.2020.22/2834
Near infrared down-conversion luminescence of Ba4Y3F17:Yb3+:Eu3+ nanoparticles under ultraviolet excitation. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS. 2020. 11 (3), P. 316–323
DOI:10.17586/2220-8054-2020-11-3-316-323
Determining the Photophysical Parameters of NaGdF4:Eu Solid Solutions in Suspensions Using the Judd–Ofelt Theory JETP Letters, 2020, Vol. 111, No. 9, pp. 525–531.
DOI:10.1134/S0021364020090064
Thermophysical Properties of Single Crystals of CaF2–SrF2–RF3 (R = Ho, Pr) Fluorite Solid Solutions Inorganic Materials, 2020, Vol. 56, No. 9, pp. 975–981.
DOI:10.1134/S0020168520090113
Study of Yb3+ Optical Centers in Fluoride Solid Solution Crystals CaF2–SrF2–YbF3. OPTICS AND SPECTROSCOPY (2020) Vol.128 No.5 p.600-604
DOI:10.1134/S0030400X20050185
Simultaneous measurement of the emission quantum yield and local temperature: The illustrative example of SrF2:Yb3+/Er3+ single crystals / European Journal of Inorganic Chemistry. 2020. v.2020, is.17. 1555–1561
https://doi.org/10.1002/ejic.202000381
Optimization of upconversion luminescence excitation mode for deeper in vivo bioimaging without contrast loss or overheating // Methods Appl. Fluoresc. 8 (2020) 025006
doi.org/10.1088/2050-6120/ab7782
Upconversion properties of SrF2:Yb3+,Er3+ single crystals // J. Mater. Chem. C, 2020, 8, 4093-4101.
DOI:10.1039/C9TC06591A
Luminescent thermometry based on Ba4Y3F17:Pr3+ and Ba4Y3F17:Pr3+,Yb3+ nanoparticles // Ceramics International. 46 (2020) 11658–11666 https://doi.org/10.1016/j.ceramint.2020.01.19
https://doi.org/10.1016/j.ceramint.2020.01.196
Diamond-rare earth composites with embedded NaGdF4: Eu nanoparticles as robust photo- and X-ray luminescent materials for photonics // ACS Appl. Nano Mater. 2020, 3, 1324-1331
doi.org/10.1021/acsanm.9b02175
Investigation of the deposition of calcium fluoride nanoparticles on the chips of CaF2 single crystals. Condensed Matter and Interphases. 2021;23(4): 607–613
DOI:10.17308/kcmf.2021.23/3681
Study of stability of luminescence intensity of β-NaGdF4: Yb: Er nanoparticle colloids in aqueous solution. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2021, 12 (2), P. 218–223
DOI:10.17586/2220-8054-2021-12-2-218-223
Thermal conductivity of single crystals of SrF2 - BaF2 solid solution // Inorg. mater. 2021 Vol. 57, No. 6, pp. 629–633.
DOI:10.1134/S002016852106008X
Growth and physical properties of CaSrBaF6 single crystals. Condensed Matter and Interphases, 2021, 23(1), 101–107
DOI:10.17308/kcmf.2021.23/3310
Effect of Yb3+ and Er3+ concentration on upconversion luminescence of co-doped BaF2 single crystals. Journal of Materials Chemistry C, 2021, 9, 3493 – 3503
ТЕПЛОПРОВОДНОСТЬ МОНОКРИСТАЛЛОВ ТВЕРДЫХ РАСТВОРОВ СИСТЕМЫ CaF2–SrF2–BaF2–YbF3 НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ, 2023, том 59, № 5
https://doi.org/10.31857/S0002337X23050135
Optical Properties of Fluorozirconate Glasses Doped with Chromium Ions // Russian Journal of Inorganic Chemistry. – 2023. – V. 68. – No. 8. – P. 1096–1101
Influence of xenon difluoride on the optical properties of fluorozirconate and fluorohafnate glasses. // Mendeleev Commun. ‑ 2023. – V. 33. – P. 525–527
DOI: 10.1016/j.mencom.2023.06.027
Synthesis of Ca1–x–yYbxEryF2+x+y Upconversion Powders for the Preparation of Optical Ceramics / Journal of Structural Chemistry. 2023. V. 64 (9). P. 1733–1742.
DOI:10.1134/S0022476623090160
Оптическая спектроскопия ионов Er3+ в кристаллах BaY1,8Lu0,2F8. Оптика и спектроскопия. 2023. Т.131. вып.5. с.583-588.
DOI:10.21883/OS.2023.05.55708.61-22
Cubic-phase NaYF4:Pr3+,Yb3+ down-conversion phosphors for optical temperature sensing. Solid State Communications 370 (2023) 115235
https://doi.org/10.1016/j.ssc.2023.115235
Infrared to visible up-conversion luminescence of SrF2:Ho particles upon excitation of the 5I7 level of Ho3+ ions. Journal of Luminescence, 2023, v.261. 119942
doi.org/10.1016/j.jlumin.2023.119942.
Novel Fluoride Matrix for Dual-Range Optical Sensors and Visualization // Appl. Sci. 2023, 13, 9999.
https://doi.org/10.3390/app13189999
Low-temperature phase formation in the BaF2-LaF3 system // Inorganic Materials. 2023. V. 59. № 3. P. 295-305.
DOI:10.1134/S0020168523030019
Optical properties of LiGdF4 single crystal in the terahertz and infrared ranges // Photonics. – 2023. - V. 10. - # 84 (12 pp.).
https://doi.org/10.3390/photonics10010084
Низкотемпературные фазовые равновесия в бинарных системах и получение функциональных материалов // Труды Кольского научного центра РАН. Серия технические науки. - 2023. - Т. 14. - № 4. - С. 125-128.
https://doi.org/10.37614/2949-1215.2023.14.4.021
SYNTHESIS OF SINGLE-PHASE Sr1-xBaxF2 SOLID SOLUTIONS BY COPRECIPITATION FROM AQUEOUS SOLUTIONS Solid State Sciences. 2022, v.130:106932
DOI:10.1016/j.solidstatesciences.2022.106932
Influence of the intensity of exciting radiation on the luminescent properties of nanopowders NaYF4:Yb/Tm. Optics and Spectroscopy, 2022, Vol. 130, No. 6, p.655-662.
DOI:10.21883/EOS.2022.06.54700.38-22
Interaction of Calcium and Strontium Carbonates with KF Solutions Russian Journal of Inorganic Chemistry, 2022, Vol. 67, No. 8, pp 1211–1220
DOI:10.1134/S0036023622080101
Study of synthesis temperature effect on β-NaGdF4: Yb3+, Er3+ upconversion luminescence efficiency and decay time using maximum entropy method. Methods and Applications in Fluorescence. 2022. V.10. P.024005
Doi. 10.1088/2050-6120/ac5bdc
Ап-конверсионная люминесценция твердых растворов CaF2-SrF2-HoF3 при возбуждении на уровень 5I7 ионов Ho3+. Оптика и спектроскопия. 2023, т.131, вып.3, стр.346-353
DOI: 10.21883/OS.2023.03.55384.4085-22
Получение и характеризация порошков фторида стронция, активированного фторидом неодима. Научно-технический вестник информационных технологий, механики и оптики. 15 (2015) 578–586.
https://doi.org/10.17586/2226-1494-2015-15-4-578-586
Синтез ап-конверсионных люминофоров на основе фторида стронция, легированного Ho3+ и Er3+ для визуализаторов двухмикронного излучения // Конденсированные среды и межфазные границы. 18 (2016) 408–413.
https://journals.vsu.ru/kcmf/article/view/150
Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization // Laser. Phys. 26 (2016) 084001
http://dx.doi.org/10.1088/1054-660X/26/8/084001
Efficient visible range SrF2:Yb:Er- and SrF2:Yb:Tm-based upconversion luminophores // J. Fluor. Chem. 194 (2017) 6–22.
https://doi.org/10.1016/j.jfluchem.2016.12.002
Synthesis of СаF2-YF3 nanopowders by co-precipitation from aqueos solutions // Nanosystems: Physics, Chemistry, Mathematics. 8 (2017) 462–470.
https://doi.org/10.17586/2220-8054-2017-8-4-462-470
Синтез и характеризация порошков SrF2:Yb:Tm // Конденсированные среды и межфазные границы. 9 (2017) 57-67.
https://doi.org/10.17308/kcmf.2017.19/177
Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders under excitation by infrared laser // Laser Phys. Lett. 14 (2017) 076003
https://doi.org/10.1088/1612-202X/aa7418
Preparation of nanodispersed fluorite-type Sr1-xRxF2+x (R = Er, Yb, Ho) phases from citrate solutions // J. Fluor. Chem. 194 (2017) 8–15.
https://doi.org/10.1016/j.jfluchem.2016.12.003
Synthesis of SrF2:Yb:Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH4F // Dalton Transactions. 51 (2022) 5448
https://doi.org/10.1039/d2dt00304j
Features of Ca1-xYxF2+x solid solution heat capacity behavior: diffuse phase transition / Nanosystems: Phys. Chem. Math., 2023, 14 (2), 279–285
DOI:10.17586/2220-8054-2023-14-2-279-285
Thermal Stability of LiRF4 (R = Gd, Tb) Compaunds. Cryst. Res. Tech. 2023. 2200251
DOI:10.1002/crat.202200251
Synthesis of solid solution Ba1-xLaxF2+x from nitrate melt // Russ. J. Inorg. Chem. 2022. V.67. I. 6. P. 861-867.
DOI:10.1134/S0036023622060079
Cultivation of Solanum lycopersicum under Glass Coated with Nanosized Upconversion Luminophore. Appl. Sci. 2021, 11(22), 10726
https://doi.org/10.3390/app112210726
Effect of Structural Perfection of Crystalline β-NaYF4:Yb,Er Phosphor Powders on the Efficiency of Their Upconversion Luminescence. Inorganic Materials. 58, 90–96 (2022)
DOI:10.1134/S0020168522010010
Preparation and X-ray luminescence of Ba4±xCe3±xF17±x solid solutions. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2021, 12 (4), P. 505–511.
https://doi.org/10.17586/2220-8054-2021-12-4-505-511
Synthesis of Calcium Fluoride Nanoparticles in a Microreactor with Intensely Swirling Flows. Russian Journal of Inorganic Chemistry, 2021, Vol. 66, No. 7, pp. 1047–1052.
DOI:10.1134/S0036023621070020
Transformation of calcite CaCO3 to fluorite CaF2 by action of KF solution. J. Fluor. Chem. 2021. V. 251. 109898
https://doi.org/10.1016/j.jfluchem.2021.109898
Low‐temperature phase formation in the SrF2–LaF3 system. J. Am. Ceram. Soc. 2021. 17666.
https://doi.org/10.1111/jace.17666
Optical fluoride nanoceramics / Inorganic Materials. 2021. V. 57. I 6. P. 555-578.
DOI:10.1134/S0020168521060078
Synthesis of NaYF4:Yb, Er up-conversion luminophore from nitrate flux. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2020, 11 (4), P. 417–423
DOI:10.17586/2220-8054-2020-11-4-417-423
Synthesis of calcium and strontium fluorides using Li2SO4–Na2SO4 eutectic melts. Russian Journal of Inorganic Chemistry. 2020. V. 65. I 6. P. 834-838.
DOI:10.1134/S0036023620060169
Synthesis of Upconversion Luminophores Based on Calcium Fluoride. Condensed Matter and Interphases, 2020, 22(1), 3–10
http://doi.org/10.17308/kcmf.2020.22/2524
Synthesis of inorganic fluorides in molten salt fluxes and ionic liquid mediums. / J. Fluorine Chem. – 2019. – V. 227. – 109374.
http://doi.org/10.1016/j.jfluchem.2019.109374
Получение нанопорошков твердых растворов M1-xRxF2+x (M=Ca, Sr, Ba; R=Ce, Nd, Er, Yb). //Ж. неорг. химии. 2007. № 3. т. 52. С.364-369.
Теплопроводность монокристаллов гетеровалентных твердых растворов фторидов иттербия и празеодима во фториде кальция. // Конденсированные среды и межфазные границы
Inorganic nanofluorides and related nanocomposites. Russian Chem. Rev.
https://doi.org/10.1070/RC2006v075n12ABEH003637
Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals. // Quantum Electronics.
https://doi10.1070/QE200v036n07ABEH013178
Upconversion microparticles as time-resolved luminescent probes for multiphoton microscopy: desired signal extraction from the streaking effect. J. Biomed. Opt.
https://doi.org/10.1117/1.JBO.21.9.096002
Preparation and properties of methylcellulose/nanocellulose/СаF2:Но polymer-inorganic composite films for two-micron radiation visualizers. Journal of Fluorine Chemistry
https://doi.org/10.1016/j.jfluchem.2017.08.012
Up-conversion Quantum Yield of SrF2:Yb3+,Er3+ Sub-micron Particles Prepared by Precipitation from Aqueous Solution. Journal of Materials Chemistry C. 2018,6, 598-604
https://doi.org/10.1039/C7TC04913G
Infrared-to-visible upconversion luminescence in SrF2:Er powders upon excitation of the 4I13/2 level. Optical Materials Express. 2018. v.8. #7. p. 1863-1869
https://doi.org/10.1364/OME.8.001863
Synthesis and down-conversion luminescence investigation of CaF2:Yb:Ce powders for photonics. Journal of Fluorine Chemistry.
https://doi.org/10.1016/j.jfluchem.2019.04.010
Plant photochemistry under glass coated with up-conversion luminescent film. Appl. Sci. 2022, 12, 7480.
https://doi.org/10.3390/app12157480
Laser damage threshold of hydrophobic up-conversion carboxylated nanocellulose/SrF2:Hо composite films functionalized with 3-aminopropyltriethoxysilane. Cellulose
DOI:10.21203/rs.3.rs-461271/v1
Comparison of quantum yield of upconversion nanocrystals determined by absolute and relative methods. Advanced Photonics Research. 2023, 4, 2200187.
https://doi.org/10.1002/adpr.202200187
The influence of Medium on Fluorescence Quenching of Colloidal Solutions of the Nd3+:LaF3 Nanoparticles Prepared with HTMW Treatment. Nanomaterials. 2022, 12, 3749.
10.3390/nano12213749