Кузнецов Сергей Викторович
Заведующий лабораторией, кандидат химических наук
ResearcherID: K-8783-2012
Scopus ID #1: 56542583300
Scopus ID #2: 6507428141
Elibrary: 140666

Общая информация: Кузнецов Сергей Викторович

Заведующий лабораторией технологии наноматериалов для фотоники Отдела наноматериалов НЦЛМТ, ведущий научный сотрудник Института общей физики им. А.М. Прохорова Российской академии наук.

Область интересов. 

Разработка методов синтеза люминесцентных материалов на основе фторидов и оксидов в виде порошков, монокристаллов, оптических керамик и композитов. 

Методы исследования. 

Рентгенофазовый анализ – дифрактометр Bruker D8.

Электронная микроскопия – микроскоп Carl Zeiss NVision 40.

Синхронный термогравиметрический анализ – NETZSCH STA F3 449 Jupiter. Дифференциально-термический анализ MOM Q-1500 D.

Достижения. 

Грамота Отделения физических наук РАН за работу "Получение и исследование фторидной лазерной нанокерамики" (2015 г.).

Диплом конкурса Федеральной службы по интеллектуальной собственности "100 лучших изобретений России" за 2010 год (RU 2411185).

Диплом I степени XVI Республиканского конкурса Инженер года - 2020 в номинации Лучшее изобретение Республики Мордовия как соавтору патента РФ №2700069 от 12.09.2019 г.

Лауреат конкурса научных работ ИОФ РАН - 2009 год.

Диплом общего конкурса научных работ ИОФ РАН - в 2013 и 2017 годах

Диплом конкурса научных работ молодых сотрудников ИОФ РАН - 2013 год.

Лауреат конкурса научных работ молодых сотрудников НЦ ЛМТ ИОФ РАН - 2007 год.

Лауреат (1 место) открытого конкурса научных студенческих работ МИТХТ - 2004 г.

Почетный диплом МИТХТ за активную и плодотворную научно-исследовательскую работу при успешном сочетании с учебой - 2004 г.

Сертификат журнала Journal of Fluorine Chemistry за выдающий вклад в рецензирование (Outstanding Reviewer). Август 2018 г., Сертификаты рецензента журналов Alloys and Compounds, Journal of Luminescence, Journal of Rare Earth, Materials Letters

Диплом журнала "Nanosystems: Physics, Chemistry, Mathematics" за публикацию вошедшую в топ-7 по количеству цитирований за 2017 год по данным WOS и Scopus. Публикация: SYNTHESIS OF CAF2-YF3 NANOPOWDERS BY CO-PRECIPITATION FROM AQUEOS SOLUTIONS Fedorov P.P., Mayakova M.N., Kuznetsov S.V., Voronov V.V., Ermakova Yu.A., Baranchikov A.E. Nanosystems: Physics, Chemistry, Mathematics. 2017. Т. 8. № 4. С. 462-470

Сертификат издательства Wiley как автору #Top Cited Article 2020-2021# в журнале European Journal of Inorganic Chemistry.

Приглашенный редактор (Guest Editor) в 2022 году журнала Inorganic - Special Issue "Oxide Optical Ceramics and Precursor Powders Preparation for Luminescence and Laser Applications". https://www.mdpi.com/journal/inorganics/special_issues/oxide_ceramics_powders

Статьи и публикации сотрудника

  1. "Spectroscopy properties of Dy3+ doped CaF2 single crystals and CaF2-SrF2 solid liquid," 2022 International Conference Laser Optics (ICLO), 2022, pp. 1-1,
    DOI:10.1109/ICLO54117.2022.9840327
  2. "Temperature dependence of lasing properties of 8.3(3) at.% Yb:YSAG ceramics," 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russian Federation, 2024, pp. 43-43
    doi: 10.1109/ICLO59702.2024.10624196
  3. A study of the transport of thermal acoustic phonons in CaF 2 single crystals and ceramics within the subterahertz frequency range. Doklady Physics. 2009. V. 54. № 1 P. 14-17.
    DOI:10.1134/S1028335809010042
  4. Absorption and Luminescence Spectra of CeF3_Doped BaF2 Single Crystals and Nanoceramics // Inorganic Materials, 2016, V. 52, No. 2, p. 213–217. 
    DOI:10.1134/S0020168516020047
  5. Achieving high NIR-to-NIR conversion efficiency by optimization of Tm3+ content in Na(Gd,Yb)F4: Tm upconversion luminophores, Laser Physics Letters 2020. 17 125701
    doi.org/10.1088/1612-202X/abbede.
  6. Algorithm for calculation of up-conversion luminophores mixtures chromaticity coordinates // J. Fluor. Chem. 237 (2020) 109607
    https://doi.org/10.1016/j.jfluchem.2020.109607
  7. BaO-BaB2O4 phase systems // Russian journal of inorganic chemistry

  8. Ca1-x-yYbxPryF2+x+y solid solution powders as a promising materials for crystalline silicon solar energetics // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2018, 9 (2), P. 259–265.
    DOI:10.17586/2220-8054-2018-9-2-259-265
  9. CaF2:Yb laser ceramics. // Optical Materials. 2013. v.35. p.444-450.
    DOI:10.1016/j.optmat.2012.09.035
  10. Cerium-doped gadolinium-scandium-aluminum garnet powders: synthesis and use in X-ray luminescent diamond composites. Ceramics International. 2022. V.48, p.12962-12970.
    10.1016/j.ceramint.2022.01.169
  11. Co-precipitation of yttrium and barium fluorides from aqueous solutions. // Materials Research Bulletin. 2012. V. 47. P.1794-1799.
    DOI:10.1016/j.materresbull.2012.03.027
  12. Comment on the paper “Thermodynamic evaluation and optimization of the (NaNO3 + KNO3 + Na2SO + K2SO4) system” by Ch. Robelin, P. Chartrand, A.D. Pelton, published in J. Chem. Therm. 83 (2015) 12-26. The Journal of Chemical Thermodynamics. – 2020. – V. 149
    DOI:10.1016/j.jct.2020.106178
  13. Comparison of quantum yield of upconversion nanocrystals determined by absolute and relative methods. Advanced Photonics Research. 2023, 4, 2200187.
    https://doi.org/10.1002/adpr.202200187
  14. Comparison of the thermophysical and optical properties of ceramics based on YSAG: Yb,Er solid solutions with different forms of crystal lattice disorder. Ceramics International. 2024.
    https://doi.org/10.1016/j.ceramint.2024.06.296
  15. Composite up-conversion luminescent films containing a nanocellulose and SrF2:Ho particles // Cellulose 2019 (26), 2403-2423
    DOI:10.1007/s10570-018-2194-4
  16. Continuously tunable cw lasing near 2.75 μm in diode-pumped Er3+:SrF2 and Er3+:CaF2 crystals. // Quantum Electronics.
    https://doi10.1070/QE200v036n07ABEH013178
  17. Coprecipitation from Aqueous Solutions to Prepare Binary Fluorides // Russian Journal of Inorganic Chemistry 2011.v.56.is.10. p.1525-1531.
    DOI:10.1134/S003602361110007X
  18. Coprecipitation of barium-bismuth fluorides from aqueous solutions: Nanochemical effects // Nanotechnologies in Russia. 2011. V. 6, Is. 3, pp 203-210
    DOI:10.1134/S1995078011020078
  19. Crystal growth and phase equilibria in the BaB2O4-NaF system. // Crystal growth and design. 2009. Vol.9. p. 4060-4063.
    DOI:10.1021/cg9002675
  20. Cubic-phase NaYF4:Pr3+,Yb3+ down-conversion phosphors for optical temperature sensing. Solid State Communications 370 (2023) 115235
    https://doi.org/10.1016/j.ssc.2023.115235
  21. Cultivation of Solanum lycopersicum under Glass Coated with Nanosized Upconversion Luminophore. Appl. Sci. 2021, 11(22), 10726
    https://doi.org/10.3390/app112210726
  22. Dependence of quantum yield of up-conversion luminescence on the composition of fluorite-type solid solution NaY1-x-yYbxEryF4. // Nanosystems: physics, chemistry, mathematics. 2013. 4(5). P.648-656.

  23. Determining the Photophysical Parameters of NaGdF4:Eu Solid Solutions in Suspensions Using the Judd–Ofelt Theory JETP Letters, 2020, Vol. 111, No. 9, pp. 525–531.
    DOI:10.1134/S0021364020090064
  24. Di- and Trivalent Ytterbium distributions along a melt-grown CaF2 crystal. // Inorganic Materials. 2014. V.50. №7. pp.733-737.
    DOI:10.1134/S0020168514070024
  25. Diamond composite with embedded YAG:Ce nanoparticles as the fast source of X-ray luminescence in visible and near-IR range. Carbon 174 (2021) p.52-58.
    https://doi.org/10.1016/j.carbon.2020.12.020
  26. Diamond seed dependent luminescence properties of CVD diamond composite. Carbon. 2024. V.222. #118975.
    https://doi.org/10.1016/j.carbon.2024.118975
  27. Diamond-EuF3 nanocomposites with bright orange photoluminescence // Diamond and Related Materials. 2017. v.72. p.47-52.
    DOI:10.1016/j.diamond.2016.12.022
  28. Diamond-rare earth composites with embedded NaGdF4: Eu nanoparticles as robust photo- and X-ray luminescent materials for photonics // ACS Appl. Nano Mater. 2020, 3, 1324-1331
    doi.org/10.1021/acsanm.9b02175
  29. Dispersibility of freeze-drying unmodified and modified TEMPO-oxidized cellulose nanofibrils in organic solvents. // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2021, 12 (6), P. 763-772.
    DOI:10.17586/2220-8054-2021-12-6-763-772
  30. Down-conversion luminescence of Ce-Yb ions in YF3 // Optical Materials, 2019. v.95. 109256.
    10.1016/j.optmat.2019.109256
  31. Effect of Structural Perfection of Crystalline β-NaYF4:Yb,Er Phosphor Powders on the Efficiency of Their Upconversion Luminescence. Inorganic Materials. 58, 90–96 (2022)
    DOI:10.1134/S0020168522010010
  32. Effect of the fluorinating agent type (NH4F, NaF, KF) on the particle size and emission properties of SrF2:Yb:Er luminophores // J. Mater. Chem. C. 2024.
    https://doi.org/10.1039/D3TC03926A
  33. Effect of the pH on the formation of NaYF4:Yb:Er nanopowders by co-crystallization in presence of polyethyleneimine. // Journal of Fluorine Chemistry. 2014. V.158. p.60-64.
    DOI:10.1002/chin.201412012
  34. Effect of vacuum sintering conditions on the properties of Y3Al5O12: Ce luminescent ceramics. Modern Electronic Materials 2022; 8(3): 123–130.
    https://doi.org/10.3897/j.moem.8.3.98706
  35. Effect of Yb3+ and Er3+ concentration on upconversion luminescence of co-doped BaF2 single crystals. Journal of Materials Chemistry C, 2021, 9, 3493 – 3503

  36. Efficient laser based CaF2-SrF2-YbF3 nanoceramics. // Optics Letters. 2008. Vol. 33. №5 P.521-523.
    DOI:10.1364/OL.33.000521
  37. Efficient visible range SrF2:Yb:Er- and SrF2:Yb:Tm-based upconversion luminophores // J. Fluor. Chem. 194 (2017) 6–22.
    https://doi.org/10.1016/j.jfluchem.2016.12.002
  38. Elaboration of nanofluorides and ceramics for optical and laser applications./ Chapter in the book “Photonic & Electronic Properties of Fluoride Materials” Ed. A.Tressaud, K. Poeppelmeier, Print Book pp.7-31 2016
    http://doi.org/10.1016/B978-0-12-801639-8.00002-7
  39. Electrical Conductivity of Sodium Sulfate-Based Phases. Inorganic Materials, 2022, Vol. 58, No. 8, pp. 806–813
    https://doi.org/10.1134/S0020168522080118
  40. Estimation of Sc3+ solubility in dodecahedral and octahedral sites in YSAG:Yb // J. American Ceramic Society. 2019. V.102(8). P.4862-4873.
    https://doi.org/10.1111/jace.16294
  41. Evolution of yttria nanoparticle ensembles // Nanotechnologies in Russia. 2010, Volume 5, Issue 9, pp 624-634.
    DOI:10.1134/S1995078010090065
  42. Fabrication and characterization of new Er-doped yttrium-scandium-aluminum garnet ceramics. 15-30 January 2022 Chem. Proc. 2022, 9, 18.
    https://doi.org/10.3390/IOCC_2022-12163
  43. Fabrication and characterization of LuAG: Er ceramics with high optical transmission. Journal of the European Ceramic Society 45 (2025) 117033
    https://doi.org/10.1016/j.jeurceramsoc.2024.117033
  44. Fabrication and optical properties of garnet ceramics based on Y3-xScxAl5O12 doped with ytterbium and erbium. Dalton Transactions, 2023, 52, p.11285-11296.
    DOI:10.1039/D3DT01453C
  45. Fabrication and Optical Properties of YSAG:Cr Optical Ceramics. Ceramics International. 2023. V.49, Is.19, P. 32127-32135
    https://doi.org/10.1016/j.ceramint.2023.07.181
  46. Features of Ca1-xYxF2+x solid solution heat capacity behavior: diffuse phase transition / Nanosystems: Phys. Chem. Math., 2023, 14 (2), 279–285
    DOI:10.17586/2220-8054-2023-14-2-279-285
  47. Fluoride laser nanoceramics. // Journal of Physics: Conference Series. V.345. (2012) 012017 P.1-21.
    DOI:10.1088/1742-6596/345/1/012017
  48. Fluorite-like phases based on barium and rare earth fluorides. Journal of Structural Chemistry.
    https://doi.org/10.26902/JSC_id12684
  49. Formation of dissipative structures at hologram recording in CaF2 crystals with color centers. // 2015. Proc. of SPIE vol.9508 p.95080D-1 - 95080D-9.
    DOI:10.1117/12.2178477
  50. Growth and physical properties of CaSrBaF6 single crystals. Condensed Matter and Interphases, 2021, 23(1), 101–107
    DOI:10.17308/kcmf.2021.23/3310
  51. Growth of Yb:Na2SO4 crystals and study of their spectral – luminescent characteristics Quantum Electronics, 2019, V. 49, N. 11, P. 1008-1010
    DOI:10.1070/QEL17107
  52. Harvesting sub-bandgap photons via up-conversion for perovskite solar cells. ACS Applied Materials & Interfaces.  2021, 13, 46, 54874–54883
    DOI:10.1021/acsami.1c13477
  53. High lignin content cellulose nanofibrils obtained from thermomechanical pulp. / Nanosystems: Phys. Chem. Math., 2022, 13 (6), 698–708.
    DOI:10.17586/2220-8054-2022-13-6-698-708
  54. Highly dispersed anti-Stokes phosphors based on KGd2F7:Yb,Er single-phase solid solutions. Nanosystems: Phys. Chem. Math., 2024, 15 (5), 702–709
    DOI 10.17586/2220-8054-2024-15-5-702-709539. 
  55. Hydrophobic up-conversion carboxylated nanocellulose/fluoride phosphor composite films modified with alkyl ketene dimer. Carbohydrate polymers. Carbohydrate Polymers 250 (2020) 116866
    doi.org/10.1016/j.carbpol.2020.116866
  56. Hydrophobization of up-conversion luminescent films based on nanocellulose/MF2:Ho particles (M = Sr, Ca) by acrylic resin // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2019, 10 (5), P. 585–598
    DOI:10.17586/2220-8054-2019-10-5-585-598
  57. Impact of sensitizer Yb and activator Tm on luminescence intensity of β-NaYF4:Yb/Tm Nanoluminophores. Nanosystems:Phys. Chem. Math., 2022, 13 (3), 331-341
    DOI:10.17586/2220-8054-2022-13-3-331-341
  58. Indium Iodide Single Crystal – Breakthrough Material for Infrared Acousto-Optics. Optics Letters
    https://doi.org/10.1364/OL.393737
  59. Indium monoiodide: preparation and deep purification. // Russian Journal of Inorganic chemistry. 2015. vol. 60 #11. pp.1333-1336.
    DOI:10.1134/S0036023615110066
  60. Influence of accidental impurities on the spectroscopic and luminescent properties of ZnWO4 crystal. Materials 2023, 16, 2611.эо
    https://doi.org/10.3390/ma16072611
  61. Influence of the ceramic powder morphology and forming conditions on the optical transmittance of YAG:Yb ceramics // Ceramics International 45(2019) p.4418-4423
    doi.: 10.1016/j.ceramint.2018.11.119
  62. Influence of the intensity of exciting radiation on the luminescent properties of nanopowders NaYF4:Yb/Tm. Optics and Spectroscopy, 2022, Vol. 130, No. 6, p.655-662.
    DOI:10.21883/EOS.2022.06.54700.38-22
  63. Influence of Yb3+ content on the optical and thermophysical properties of YSAG:Yb:Er solid solutions. Journal of the American Ceramic Society. 2024; 1–13.
    http://dx.doi.org/10.1111/jace.20077
  64. Influence of Y–Gd ratio on phase formation and spectroscopic properties of NaGd0.8−xYxYb0.17Er0.03F4 solid solutions // Laser Phys. Lett. 16 (2019) 035604 (11pp)
    DOI:10.1088/1612-202X/ab00f9
  65. Infrared to visible up-conversion luminescence of SrF2:Ho particles upon excitation of the 5I7 level of Ho3+ ions. Journal of Luminescence, 2023, v.261. 119942
    doi.org/10.1016/j.jlumin.2023.119942.
  66. Infrared-to-visible upconversion luminescence in SrF2:Er powders upon excitation of the 4I13/2 level. Optical Materials Express. 2018. v.8. #7. p. 1863-1869
    https://doi.org/10.1364/OME.8.001863
  67. Inorganic nanofluorides and related nanocomposites. Russian Chem. Rev.
    https://doi.org/10.1070/RC2006v075n12ABEH003637
  68. Interaction of Calcium and Strontium Carbonates with KF Solutions Russian Journal of Inorganic Chemistry, 2022, Vol. 67, No. 8, pp 1211–1220
    DOI:10.1134/S0036023622080101
  69. Investigation of the deposition of calcium fluoride nanoparticles on the chips of CaF2 single crystals. Condensed Matter and Interphases. 2021;23(4): 607–613
    DOI:10.17308/kcmf.2021.23/3681
  70. Irradiation Behavior of Ytterbium-Doped Calcium Fluoride Crystals and Ceramics Inorganic Materials, 2016, Vol. 52, No. 8, pp. 842–850.
    DOI:10.1134/S0020168516080033
  71. Judd-Ofelt Analysis of High Erbium Content Yttrium-Aluminum and Yttrium-Scandium-Aluminum Garnet Ceramics. Inorganics 2022, 10, 170.
    https://doi.org/10.3390/inorganics10100170
  72. Laser damage threshold of hydrophobic up-conversion carboxylated nanocellulose/SrF2:Hо composite films functionalized with 3-aminopropyltriethoxysilane. Cellulose
    DOI:10.21203/rs.3.rs-461271/v1
  73. Long-wavelength optical properties of the Ca0.33Sr0.33Ba0.33F2 solid solution single crystals. // Optical Materials. 2022. v.127. 112267.
    DOI.10.1016/j.optmat.2022.112267
  74. Low temperature phase formation in the CaF2–HoF3 system. // Russ. J. Inorg. Chem. 62 (2017) p.1173–1176.
    DOI:10.1134/S0036023617090078
  75. Low-temperature phase formation in the BaF2-LaF3 system // Inorganic Materials. 2023. V. 59. № 3. P. 295-305.
    DOI:10.1134/S0020168523030019
  76. Low-temperature phase formation in the BаF2-CeF3 system // J. Fluorine Chemistry, 2016. 187. p.33-39
    doi:10.1016/j.jfluchem.2016.05.008
  77. Luminescence of Ba1-xLaxF2+x:Ce3+ crystals // Doklady Physics 2016. V.61. №2. p. 50-54.
    DOI:10.1134/S1028335816020063
  78. LUMINESCENCE OF GdF3:Pr:Yb AND YF3:Pr:Yb SOLID SOLUTIONS SYNTHESIZED BY CRYSTALLIZATION FROM THE MELT. // Journal of Applied Spectroscopy, 2019. Vol. 86, No. 5. p. 795-801 
    DOI:10.1007/s10812-019-00895-1
  79. Luminescent diamond composites, Functional Diamond, 2022. 2:1, 53-63
    DOI:10.1080/26941112.2022.2071112
  80. Luminescent thermometry based on Ba4Y3F17:Pr3+ and Ba4Y3F17:Pr3+,Yb3+ nanoparticles // Ceramics International. 46 (2020) 11658–11666 https://doi.org/10.1016/j.ceramint.2020.01.19
    https://doi.org/10.1016/j.ceramint.2020.01.196
  81. Mechanisms and absolute quantum yield of upconversion luminescence of fluoride phosphors / Chinese Optics Letters, Vol. 16, Issue 9, 091901 (2018)
    doi.org/10.3788/COL201816.091901
  82. Microstructure and scintillation characteristics of BaF2 ceramics. // Inorganic Materials. 2014. Vol.50. №7. pp.738-744.
    DOI:10.1134/S002016851407005X
  83. Monoclinic zinc monotungstate Yb3+,Li+:ZnWO4: Part I. Czochralski growth, structure refinement and Raman spectra. Journal of Luminescence. (2020). 228. 117601
    DOI:10.1016/j.jlumin.2020.117601
  84. Morphological stability of Solid-Liquid Interface during Melt Crystallization of M1-XRXF2+X Solid Solutions. // Inorganic Materials. 2008. Vol. 44, №13. P.1434-1458
    DOI:10.1134/S0020168508130037
  85. Multifunctional upconversion nanoparticles based on NaYGdF4 for laser induced heating, non-contact temperature sensing and controlled hyperthermia with use of pulsed periodic laser excitation / Progress in Biomedical Optics and Imaging - Proceedings of SP
    DOI: 10.1117/12.2312484
  86. NaGdF4:Yb,Er,Tm upconversion nanoparticles for bioimaging in shortwave-infrared range: study of energy transfer processes and composition optimization. Photonics 2024, 11, 38
    10.3390/photonics11010038
  87. Nanofluorides. // J. Fluorine Chem. 2011. V.132. Is.12. P.1012-1039.
    DOI:10.1016/j.jfluchem.2011.06.025
  88. Nanostructure of Optical Fluoride Ceramics. // Inorganic Materials: Applied Research, V.2. (2) 2011. P.97-103.
    DOI:10.1134/S207511331102002X
  89. Near infrared down-conversion luminescence of Ba4Y3F17:Yb3+:Eu3+ nanoparticles under ultraviolet excitation. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS. 2020. 11 (3), P. 316–323
    DOI:10.17586/2220-8054-2020-11-3-316-323
  90. New Sr1-x-yRx(NH4)yF2+x-y (R = Yb, Er) solid solution as precursor for high efficiency up-conversion luminophor and optical ceramics on the base of strontium fluoride. Materials Chemistry Physics. 2016. v.172. p.150-157
    doi:10.1016/j.matchemphys.2016.01.055
  91. Novel Fluoride Matrix for Dual-Range Optical Sensors and Visualization // Appl. Sci. 2023, 13, 9999.
    https://doi.org/10.3390/app13189999
  92. Nucleation and growth of fluoride crystals by agglomeration of the nanoparticles // 2014. J. Crystal Growth. V.401. p.63-66.
    DOI:10.1010/j.jcrysgro.2013.12.069
  93. Optical absorption in CaF2 nanoceramics. // Quantum Electronics. 2009. Vol.39. (10). P.943-947.
    DOI:10.1070/QE2009V039N10ABEH014008
  94. Optical fluoride nanoceramics / Inorganic Materials. 2021. V. 57. I 6. P. 555-578.
    DOI:10.1134/S0020168521060078
  95. Optical Lithium Fluoride Ceramics. // Doklady Physics, 2007, Vol.52, №12, pp.677-680
    DOI:10.1134/S1028335807120099
  96. Optical properties of non-stoichiometric YAG: Ce luminescent ceramics. Optical materials. (2023). v.143. #114231
    DOI:10.2139/ssrn.4431704
  97. Optical properties of YSAG:Yb:Er ceramics with Sc3+ cations in the dodecahedral and octahedral positions of the garnet crystal lattice". Modern Electronic Materials. 2023. 9(3). P.133-144.
    10.3897/j.moem.9.3.115403
  98. Optical spectroscopy of the Er3+ ions heavily doped BaY1.8Lu0.2F8 mixed crystals. Optical Materials 147 (2024) 114585 
    https://doi.org/10.1016/j.optmat.2023.114585
  99. Optimization of upconversion luminescence excitation mode for deeper in vivo bioimaging without contrast loss or overheating // Methods Appl. Fluoresc. 8 (2020) 025006
    doi.org/10.1088/2050-6120/ab7782
  100. Phase diagram of the NaF-CaF2 system and the electrical conductivity of a CaF2-based solid solution. // Russian Journal of Inorganic Chemistry. 2016. V.61. #11. Pp.1472-1478.
    DOI:10.1134/S003602361611005X
  101. Phase diagrams of the BaF2–NdF3 and BaF2–PrF3 systems / J. Am. Ceram. Soc. 2024
    https://doi.org/10.1111/jace.20152
  102. Phase diagrams of the Li2SO4-Na2SO4 system / Journal of American ceramic society. 2020. v.103, is.5, p.3390-3400
    DOI:10.1111/jace.16996
  103. Phase Equilibria in LiYF4–LiLuF4 System and Heat Conductivity of LiY1–xLuxF4 Single Crystals. // Russian Journal of Inorganic Chemistry, 2018, Vol. 63, No. 4, pp. 433–438.
    DOI:10.1134/S0036023618040162
  104. Phase Equilibria in Systems of Gallium Sulfate with Lithium or Sodium Sulfate // Russian Journal of Inorganic Chemistry, 2017, Vol. 62, No. 11, pp. 1505–1510
    DOI:10.1134/S0036023617110067
  105. Phase formation in LaF3-NaGdF4, NaGdF4-NaLuF4, and NaLuF4-NaYF4 systems: Synthesis of powders by co-precipitation from aqueous solutions. // J. of Fluorine Chemistry. 2014. 161. P.95-101.
    DOI:10.1016/j.jfluchem.2014.02.011
  106. Photo- and X-ray induced cytotoxicity of CeF3-YF3-TbF3 nanoparticle-polyvinylpyrrolidone –“Radachlorin” composites for combined photodynamic therapy. Materials 2024, 17, 316.
    https://doi.org/10.3390/ma17020316
  107. Photodynamic processes in prospective downconversion luminophores NaLa(MoO4)2:Yb3+. 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russian Federation, 2024, pp. 43-43
    10.1109/ICLO59702.2024.10624167
  108. Plant photochemistry under glass coated with up-conversion luminescent film. Appl. Sci. 2022, 12, 7480.
    https://doi.org/10.3390/app12157480  
  109. Preparation and properties of methylcellulose/nanocellulose/СаF2:Но polymer-inorganic composite films for two-micron radiation visualizers. Journal of Fluorine Chemistry
    https://doi.org/10.1016/j.jfluchem.2017.08.012
  110. Preparation and X-ray luminescence of Ba4±xCe3±xF17±x solid solutions. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2021, 12 (4), P. 505–511.
    https://doi.org/10.17586/2220-8054-2021-12-4-505-511
  111. Preparation of nanodispersed fluorite-type Sr1-xRxF2+x (R = Er, Yb, Ho) phases from citrate solutions // J. Fluor. Chem. 194 (2017) 8–15.
    https://doi.org/10.1016/j.jfluchem.2016.12.003
  112. Prospective visible laser active media based on disordered fluorite-type structure crystals / The European Physical Journal Conferences (IWQO-2019) 220, 03024 (2019) 
    https://doi.org/10.1051/epjconf/201922003024
  113. Pulsed periodic laser excitation of upconversion luminescence for deep biotissue visualization // Laser. Phys. 26 (2016) 084001
    http://dx.doi.org/10.1088/1054-660X/26/8/084001
  114. Pushing the Limits: Down‐Converting Er3+‐Doped BaF2 Single Crystals with Photoluminescence Quantum Yield Surpassing 100%. Adv. Optical Mater. 2024, 2303094
    https://doi.org/ 10.1002/adom.202303094
  115. Simultaneous measurement of the emission quantum yield and local temperature: The illustrative example of SrF2:Yb3+/Er3+ single crystals / European Journal of Inorganic Chemistry. 2020. v.2020, is.17. 1555–1561
    https://doi.org/10.1002/ejic.202000381
  116. Single-Crystalline InI - Material for Infrared Optics // Doklady Physics. 2016. v.468. №4-6, pp.261-265.
    DOI:10.1134/S1028335816060069
  117. Single-phase nanopowders of Sr0.85-xBaxEu0.15F2.15: Investigation of structure and X-ray luminescent properties // Ceramics International 49 (2023)  39189-39195
    DOI:10.1016/j.ceramint.2023.09.262
  118. Sintering and microstructure evolution of Er1.5Y1.5-xScx+yAl5-yO12 garnet ceramics with scandium in dodecahedral and octahedral sites. Journal of the European Ceramic Society.2022.v.42, is.5, p.2464-2477
    10.1016/j.jeurceramsoc.2022.01.008
  119. Sodium Sulfate Polymorphism. Russian Journal of Inorganic Chemistry, 2022, Vol. 67, No. 7, pp. 970–977.
    DOI:10.1134/S0036023622070208
  120. Soft chemical synthesis of NaYF4 nanopowders. // Russian Journal of Inorganic Chemistry. 2008. Vol. 53. #11. pp.1681-1685.
    DOI:10.1134/S0036023608110028
  121. Soft Chemistry Synthesis of Powders in the BaF2–ScF3 System. // Russian Journal of Inorganic Chemistry. 2014. Vol. 59. No. 7. pp. 773–777
    DOI:10.1134/S003602361407016X
  122. Spectral and cathodoluminescence decay characteristics of the Ba1−xCexF2+x (x = 0.3–0.4) solid solution synthesized by precipitation from aqueous solutions and fusion // Photonics. 10 (2023) 1057
    DOI:10.3390/photonics10091057
  123. Spectral-kinetic characteristics of crystals and nanoceramics based on BaF2 and BaF2: Ce. Physics of the Solid State volume 52, pages1910–1914 (2010). 
    DOI:10.1134/S1063783410090209
  124. Stabilization of the Ba4Y3F17 phase in the NaF-BaF2-YF3 system. Condensed Matter and Interphases. 2024; 26(2): 314–320
    https://doi.org/10.17308/kcmf.2024.26/11942
  125. Stable garnets in the Er2O3-Sc2O3-Al2O3 oxide system for optical ceramics application. Ceramics International. 2022. V.48. is.24. p.p.36739-36747.
    doi.org/10.1016/j.ceramint.2022.08.235
  126. Structural Micromodification of Diamond by Femtosecond Laser Pulses Through Optical Contact with a Nonlinear Highly Refractive Immersion Medium. JETP Letters. 2024.
    DOI: 10.1134/S0021364024600149
  127. Structure and luminescence properties of EuF3 and SrF2:Eu nanoparticles after microwave plasma annealing in “methane–hydrogen”. Dalton Trans. 2024
    https://doi.org/10.1039/D4DT01664E
  128. Study of energy transfer processes between rare earth ions and photosensitizer molecules for photodynamic therapy with IR-excitation. Biomedical Photonics. 2021, 10(4):23-34. (In Russ.)
    https://doi.org/10.24931/2413-9432-2021-10-4-23-34
  129. Study of stability of luminescence intensity of β-NaGdF4: Yb: Er nanoparticle colloids in aqueous solution. NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2021, 12 (2), P. 218–223
    DOI:10.17586/2220-8054-2021-12-2-218-223
  130. Study of synthesis temperature effect on β-NaGdF4: Yb3+, Er3+ upconversion luminescence efficiency and decay time using maximum entropy method. Methods and Applications in Fluorescence. 2022. V.10. P.024005
    Doi. 10.1088/2050-6120/ac5bdc
  131. Study of the spectral and kinetic characteristics of the Er3+ ion in BaY1.8Lu0.2F8 mixed crystals to assess the possibility of continuous laser oscillation at a wavelength of 2.7 μm 2024 International Conference Laser Optics (ICLO), Saint Petersburg, Russ
    10.1109/iclo59702.2024.10624501
  132. Study of Yb3+ Optical Centers in Fluoride Solid Solution Crystals CaF2–SrF2–YbF3. OPTICS AND SPECTROSCOPY (2020) Vol.128 No.5 p.600-604
    DOI:10.1134/S0030400X20050185
  133. Syntheses of strontium fluoride nanoparticles in a microreactor with intensely swirling flows // Nanosystems. 2024. V. 13. Nanosystems: Phys. Chem. Math., 2024, 15 (1), 115–121.
    DOI 10.17586/2220-8054-2024-15-1-115-121. 
  134. Synthesis and down-conversion luminescence investigation of CaF2:Yb:Ce powders for photonics. Journal of Fluorine Chemistry.
    https://doi.org/10.1016/j.jfluchem.2019.04.010
  135. Synthesis and down-conversion luminescence of Ba4Y3F17:Yb:Pr solid solutions for photonics. // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2019, 10 (2), P. 190–198.
    DOI: 10.17586/2220-8054-2019-10-2-190-198
  136. Synthesis and Luminescence Characteristics of LaF3:Yb:Er Powders Produced by Coprecipitation from Aqueous Solutions // Russian Journal of Inorganic Chemistry, 2018, Vol. 63, No. 3, pp. 293–302.
    DOI:10.1134/S0036023618030130
  137. Synthesis and Luminescence of Sr1–x–yYbxEuyF2+x+y Solid Solutions for Photonics // Inorganic Materials, 2019, Vol. 55, No. 10, pp. 1031–1038
    DOI:10.1134/S002016851910008X
  138. Synthesis and luminescence studies of CaF2:Yb:Pr solid solutions powders for photonics // Journal of Fluorine Chemistry. 2018. V.211. p.70-75.
    https://doi.org/10.1016/j.jfluchem.2018.04.008
  139. Synthesis and luminescent characteristics of submicron powdersd on the basis of sodium and yttrium fluorides doped with rare earth elements. // Nanotechnologies in Russia. 2012. V.7. №11-12. pp.615-628.
    DOI:10.1134/S1995078012060067
  140. Synthesis and quantum yield investigations of the Sr1-x-yPrxYbyF2+x+y luminophores for photonics // NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2018, 9 (5), P. 663-668
    DOI:10.17586/2220-8054-2018-9-5-663-668
  141. Synthesis of Ba4R3F17 (R stands for Rare-Earth Elements) Powders and Transparent Compacts on Their Base. // Russian Journal of Inorganic Chemistry. 2010. Vol.55. №4. pp.484-493.
    DOI:10.1134/S0036023610040029
  142. Synthesis of Ca1–x–yYbxEryF2+x+y Upconversion Powders for the Preparation of Optical Ceramics / Journal of Structural Chemistry. 2023. V. 64 (9). P. 1733–1742.
    DOI:10.1134/S0022476623090160
  143. Synthesis of Calcium Fluoride Nanoparticles in a Microreactor with Intensely Swirling Flows. Russian Journal of Inorganic Chemistry, 2021, Vol. 66, No. 7, pp. 1047–1052.
    DOI:10.1134/S0036023621070020
  144. Synthesis of KGd2F7:Yb:Er Luminophores by Co-Precipitation from Aqueous Solutions. Journal of Structural Chemistry. 2024. V. 65, P.138–148.
    https://doi.org/10.1134/S002247662401013X
  145. Synthesis of MgAl2O4 nanopowders. // Inorganic Materials. 2011. V.47. №8. P.895-898.
    DOI:10.1134/S0020168511080231
  146. Synthesis of Microstructures of Hexagonal Boron Nitride in Gyrotron Discharge in Metal–Dielectric Powder Mixtures. High Energy Chemistry, 2023, Vol. 57, Suppl. 1, pp. S53–S56
    DOI: 10.1134/S0018143923070111
  147. SYNTHESIS OF SINGLE-PHASE Sr1-xBaxF2 SOLID SOLUTIONS BY COPRECIPITATION FROM AQUEOUS SOLUTIONS Solid State Sciences. 2022, v.130:106932
    DOI:10.1016/j.solidstatesciences.2022.106932
  148. Synthesis of SrF2-YF3 nanopowders by co-precipitation from aqueous solutions. // Mendeleev Communications. 2014. V.24. P.360-362.
    DOI: 10.1016/j.mencom.2014.11.017
  149. Synthesis of SrF2:Yb:Er ceramic precursor powder by co-precipitation from aqueous solution with different fluorinating media: NaF, KF and NH4F // Dalton Transactions. 51 (2022) 5448
    https://doi.org/10.1039/d2dt00304j
  150. Synthesis of ultrafine fluorite Sr1-xNdxF2+x powders / INORGANIC MATERIALS 2012 vol. 48 p. 531-538
    DOI: 10.1134/S002016851205010X
  151. Synthesis of Upconversion Luminophores Based on Calcium Fluoride. Condensed Matter and Interphases, 2020, 22(1), 3–10
    http://doi.org/10.17308/kcmf.2020.22/2524
  152. Synthesis of Y3Al5O12:Ce powders for X-ray luminescent diamond composites. Inorganics, 2022, 10, 240.
    10.3390/inorganics10120240
  153. Synthesis of YSAG:Er ceramics and the study of the scandium impact in the dodecahedral and octahedral garnet sites on the Er3+ energy structure. Journal of Luminescence 241 (2022) 118539
    doi.org/10.1016/j.jlumin.2021.118539
  154. Synthesis of yttrium orthoborate powders  // Russian Journal of Inorganic Chemistry. 2007. Т. 52. № 6. С. 829-834
    DOI:10.1134/S0036023607060022
  155. Synthesis of СаF2-YF3 nanopowders by co-precipitation from aqueos solutions // Nanosystems: Physics, Chemistry, Mathematics. 8 (2017) 462–470.
    https://doi.org/10.17586/2220-8054-2017-8-4-462-470
  156. Temperature sensing in the short-wave infrared spectral region using core-shell NaGdF4:Yb3+,Ho3+,Er3+@NaYF4 nanothermometers. Nanomaterials 2020, 10, 1992
    https://doi.org/10.3390/nano10101992
  157. Temperature-related changes in the structure of YSAG:Yb garnet solid solutions with the high Sc3+ concentration. Journal of the European Ceramic Society
    https://doi.org/10.1016/j.jeurceramsoc.2019.07.041
  158. The ACCESS Collaboration. Array of cryogenic calorimeters to evaluate the spectral shape of forbidden β-decays: the ACCESS project. Eur. Phys. J. Plus (2023) v.138, article number 445
    https://doi.org/10.1140/epjp/s13360-023-03946-x
  159. The Effect of Environment pH on Surface Photoluminescence of Oxidized Nanodiamonds. J. Phys. Chem. C 2021, 2021, 125, 33, 18247–18258
    doi.org/10.1021/acs.jpcc.1c03331
  160. The Influence of Concentrations of Sensitizers and Activators on Luminescence Kinetics Parameters of Up-Conversion Nanocomplexes NaYF4:Yb3+/Tm3+. Photonics 2024, 11, 228.
    doi.org/10.3390/photonics11030228
  161. The influence of Medium on Fluorescence Quenching of Colloidal Solutions of the Nd3+:LaF3 Nanoparticles Prepared with HTMW Treatment. Nanomaterials. 2022, 12, 3749.
    10.3390/nano12213749
  162. The influence of the Sc3+ dopant on the transmittance of (Y,Er)3Al5O12 ceramics. Dalton Transactions, 2021, 50, 14252 - 14256.
    doi.org/ 10.1039/D1DT02419A
  163. The Melt of Sodium Nitrate as a Medium for the Synthesis of Fluorides // Inorganics. 6. 38. (2018). P.1-17
    10.3390/inorganics6020038
  164. The scandium impact on the sintering of YSAG:Yb ceramics with high optical transmittance. Ceramics International 47 (2021) 1772–1784
    10.1016/j.ceramint.2020.09.003.
  165. The Study of the Luminescence of Solid Solutions Based on Yttrium Fluoride Doped with Ytterbium and Europium for Photonics Condensed Matter and Interphases 2020, 22(2), 225–231
    https://doi.org/10.17308/kcmf.2020.22/2834
  166. Thermal conductivity of single crystals of SrF2 - BaF2 solid solution // Inorg. mater. 2021 Vol. 57, No. 6, pp. 629–633.
    DOI:10.1134/S002016852106008X
  167. Thermal Conductivity of Single Crystals of CaF2–BaF2 Solid Solutions. Inorganic Materials, 2022, Vol. 58, No. 4, pp. 396–402
    DOI:10.1134/S0020168522040136
  168. Thermal conductivity of single crystals of Ca1-XYbXF2+X. / Doklady Physics. 2008. Vol.53. №4. pp.198-200.
    DOI:10.1134/S102833580804006X
  169. Thermal conductivity of single crystals of Ba1-XYbXF2+X. / Doklady Physics. 2008. Vol.53. №7. pp.353-355.
    DOI:10.1134/S1028335808070045
  170. Thermal conductivity of single crystals of Sr1-xYbxF2+x solid solution.// Doklady Physics. 2008. V. 53. № 8. P. 413-415.
    DOI:10.1134/S1028335808080016
  171. Thermophysical Characteristics of Single Crystals of Ba1–x–yYbxRyF2+x+y (R = Tm, Ho) Solid Solutions. Inorganic Materials, 2023, Vol. 59, No. 11, pp. 1267–1274.
    DOI: 10.1134/S0020168523110080
  172. Thermophysical Properties of Single Crystals of CaF2–SrF2–RF3 (R = Ho, Pr) Fluorite Solid Solutions Inorganic Materials, 2020, Vol. 56, No. 9, pp. 975–981.
    DOI:10.1134/S0020168520090113
  173. Transformation of siderite in the zone of hypergenesis.// Nanosystems: Phys. Chem. Math., 2022, 13 (5), 539–545.
    DOI:10.17586/2220-8054-2022-13-5-539-545
  174. Tunable upconversion luminescence of SrF2:Er,Tm phosphors. Journal of Physics: Conference Series (SPbOPEN 2019)  2019. 1410 012121
    DOI:10.1088/1742-6596/1410/1/012121
  175. Up-conversion Quantum Yield of SrF2:Yb3+,Er3+ Sub-micron Particles Prepared by Precipitation from Aqueous Solution. Journal of Materials Chemistry C. 2018,6, 598-604 
    https://doi.org/10.1039/C7TC04913G
  176. Upconversion luminescence of Ca1-xHoxF2+x and Sr0.98-xEr0.02HoxF2.02+x powders under excitation by infrared laser // Laser Phys. Lett. 14 (2017) 076003
    https://doi.org/10.1088/1612-202X/aa7418
  177. Upconversion luminescence of CaF2-SrF2-ErF3 single crystals upon 1.5 µm laser excitation / Journal of Physics: Conference Series. (SPbOPEN 2019)  2019. 1410. 012086
    DOI:10.1088/1742-6596/1410/1/012086
  178. Upconversion Luminescence of Fluoride Phosphors SrF2:Er,Yb under Laser Excitation at 1.5 μm // Optics and Spectroscopy, 2018, Vol. 125, No. 4, pp. 537–542.
    DOI:10.1134/S0030400X18100132
  179. Upconversion properties of SrF2:Yb3+,Er3+ single crystals // J. Mater. Chem. C, 2020, 8, 4093-4101.
    DOI:10.1039/C9TC06591A
  180. UV to IR down-conversion luminescence in novel Ba4Y3F17:Yb:Ce solar spectrum sensitizer for silicon solar cells Optical Materials, 2020 v.108 p.110185.
    https://doi.org/10.1016/j.optmat.2020.110185
  181. White light luminophores based on Yb3+/Er3+/Tm3+-coactivated strontium fluoride powders. // Materials Chemistry and Physics. 2014. V.148. is.1-2. P.201-207. 
    DOI:10.1016/j.matchemphys.2014.07.032
  182. X-ray luminescence of BaF2:Ce3+ powders // Nanosystems: physics, chemistry, mathematics. 2014 V.5(6). P.752-756.

  183. X-ray luminescence of diamond composite films containing yttrium-aluminum garnet nanoparticles with varied composition of Sc-Ce doping. Ceramics International. 2021. v.47, is.10, part A, p.13922-13926.
    doi.org/10.1016/j.ceramint.2021.01.259
  184. X-ray luminescence of Sr0.925–xBaxEu0.075F2.075 nanopowders. Condensed Matter and Interphases. 2024;26(2): 247–252
    https://doi.org/10.17308/kcmf.2024.26/11937
  185. X-ray luminescence of SrF2:Eu nanopowders // Opt. Spectrosc. – 2023. - V. 131(5). - P. 633-638
    DOI: 10.61011/EOS.2023.05.56516.58-22
  186. Yb:YSAG ceramics: an attractive thin-disk laser material alternative to a single crystal? Ceramics International
    https://doi.org/10.1016/j.ceramint.2024.09.381
  187.  Influence of MgO and CaO sintering additives on thermophysical, luminescent and optical properties of LuAG:Yb3+ laser ceramics. Optical Materials. 2024.
    https://doi.org/10.1016/j.optmat.2024.116353. 
  188. α-NaYF4:Yb:Er@AlPc(C2O3)4 -Based efficient up-conversion luminophores capable to generate singlet oxygen under IR excitation // J Fluorine Chem. 2016. V.182. 104-108.
    doi: http://dx.doi.org/10.1016/j.jfluchem.2015.12.012
  189. Акустооптическое взаимодействие в кристалле моноиодида индия // ДОКЛАДЫ АКАДЕМИИ НАУК ФИЗИКА, 2017, т. 476, № 3, с. 276–279.
    https://doi.org/10.7868/S086956521727007X
  190. Антистоксовый люминофор для визуализации инфракрасного лазерного излучения.
    Заявка на патент 2018128255 от 01.08.2018. Заявитель: ООО «Фотонные Технологические Системы» 
  191. Ап-конверсионная люминесценция твердых растворов CaF2-SrF2-HoF3 при возбуждении на уровень 5I7 ионов Ho3+. Оптика и спектроскопия. 2023, т.131, вып.3, стр.346-353
    DOI: 10.21883/OS.2023.03.55384.4085-22
  192. Выращивание объемных кристаллов β-BaB2O4. высокого оптического качества в системе BaB2O4 - NaBaBO3 // Неорг. матер.
    DOI:10.1007/s10789-005-0082-4
  193. Исследование гидратация хлорида стронция и оксихлоридов редкоземельных элементов. // Ж. прикладной химии.

  194. Исследование синтеза и люминесцентных характеристик фторида кальция, легированного иттербием и эрбием, для биомедицинских приложений. // Конденсированные среды и межфазные границы. 2016. т.18. №4. с.478-484.
    https://istina.msu.ru/publications/article/41845621/
  195. Исследование структуры и механизмов рассеяния фононов субтерагерцевых частот в монокристаллах и оптической керамике из фторида лития. // ЖЭТФ.2010.  Т.137 № 6, С. 1126-1132.

  196. Керамический лазерный микроструктурированный материал c двойниковой наноструктурой и способ его изготовления.
    Патент на изобретение № RU 2358045. Заявка на патент № 2007130159 от 08.08.2007.
  197. КОРРЕЛЯЦИЯ МЕЖДУ ХИМИЧЕСКИМ СОСТАВОМ И ТЕМПЕРАТУРОЙ КЮРИ НИКЕЛЬ-КОБАЛЬТОВОГО ФЕРРИТА. Журнал структурной химии. 2023. Т.64, №9, 117238.
    https://jsc.niic.nsc.ru/article/117238
  198. Люминесцентные свойства индивидуальных центров “кремний-вакансия” в CVD наноалмазах, выращенных на различных подложках. Оптика и спектроскопия. 2023. Т.131. вып.2. с.233-237.
    DOI:10.21883/OS.2023.02.55012.21-23
  199. Материал для визуализации ИК-излучения и способ его получения.
    Патент RU2661553 с приоритетом от 07 августа 2017 г.
  200. Мезоструктура гидроксосоединений иттрия и алюминия, получаемых соосаждением из водных растворов в условиях ультразвуковой обработки. // Поверхность: рентгеновские, синхротронные и нейтронные исследования. 2016. №2. С.24-34.
    DOI:10.7868/S0207352816020165
  201. Морфологическая устойчивость фронта кристаллизации твердых растворов Ba1-xRxF2+x из расплава. // Конденсированные среды и межфазные границы. 2012. Т.14. №4. С.480-488.

  202. Наночастицы фторидов с возможностью ап-конверсии для применения в медицине. // Российский биотерапевтический журнал. 2012. Т.11. №2. С.45

  203. Новый ортоборат натрия-бария NaBa4(BO3)3 // Ж. неорган. химии

  204. О полиморфизме сульфата натрия.  // Журн. неорган. химии. 2022. Т. 67. № 7. C. 916-924.
    DOI: 10.31857/S0044457X22070200
  205. Оптическая спектроскопия ионов Er3+ в кристаллах BaY1,8Lu0,2F8. Оптика и спектроскопия. 2023. Т.131. вып.5. с.583-588.
    DOI:10.21883/OS.2023.05.55708.61-22
  206. Оптические и лазерные характеристики Yb: YSAG керамики. Оптика и спектроскопия. 2023. Т.131. вып.5. с.597-603
    DOI:10.21883/OS.2023.05.55710.68-22
  207. Оптический материал инфракрасного диапазона и способ его получения
    Патент RU № 2640764 от 11.01.2018 с приоритетом от 30.09.2016.
  208. Особенности синтеза гидрофторида и фторида бария из нитратных растворов. // Наносистемы: физика, химия, математика. 2012. Т.3. №5. С.125-137.

  209. Получение и характеризация порошков фторида стронция, активированного фторидом неодима. Научно-технический вестник информационных технологий, механики и оптики. 15 (2015) 578–586.
    https://doi.org/10.17586/2226-1494-2015-15-4-578-586
  210. Получение нанопорошков оксида иттрия из карбонатных прекурсоров. // Ж. неорган. химии. 2010. Т.55. №6. С.883-889

  211. Получение нанопорошков твердых растворов M1-xRxF2+x (M=Ca, Sr, Ba; R=Ce, Nd, Er, Yb). //Ж. неорг. химии. 2007. № 3. т. 52. С.364-369.

  212. Получение наночастиц MgO. // Неорганические материалы.

  213. РЕНТГЕНОЛЮМИНЕСЦЕНТНЫЕ КОМПОЗИТЫ НА ОСНОВЕ ПОЛИКРИСТАЛЛИЧЕСКОГО АЛМАЗА С ИНТЕГРИРОВАННЫМИ НАНОЧАСТИЦАМИ NaGdF4:Eu ДЛЯ ФОТОНИКИ.// Конденсированные среды и межфазные границы, 20(3).  С.424-431.
    DOI:10.17308/kcmf.2018.20/579
  214. Самоорганизация частиц коллоидного раствора наноструктурированного углерода в этаноле при вертикальном осаждении на кварцевой подложке. Краткие сообщения по физике.  ФИАН. 2024. Номер 11, с.61-72.

  215. Синтез ап-конверсионных люминофоров на основе фторида стронция, легированного Ho3+ и Er3+ для визуализаторов двухмикронного излучения // Конденсированные среды и межфазные границы. 18 (2016) 408–413.
    https://journals.vsu.ru/kcmf/article/view/150
  216. Синтез и характеризация порошков SrF2:Yb:Tm // Конденсированные среды и межфазные границы. 9 (2017) 57-67.
    https://doi.org/10.17308/kcmf.2017.19/177
  217. Синтез нанокристаллического ортобората индия методом боратной перегруппировки.// Ж. неорг. химии

  218. Синтез порошков ортоборатов скандия. // Неорган. материалы

  219. Синтез сульфата галлия. // Химия и технология неорганических материалов. 2017. Т.12. №.3, С. 52-57.
    DOI:10.32362/2410-6593-2017-12-3-52-57
  220. Способ получения моноиодида индия высокой чистоты
    Патент RU 2606450 от 24.08.2015 г. 
  221. Способ получения порошка фторида стронция, активированного фторидом неодима для лазерной керамики
    Заявка на патент № 2014150470 от 15.12.2014. RU2574264
  222. Способ получения сцинтилляционной керамики и сцинтиллятор.
    RU 2436122 от 12.08.2010.
  223. Способ получения фторидной нанокерамики
    RU2436877 от 06.05.2010
  224. Способ получения фторидов металлов.
    Патент на изобретение №2328448 RU. Заявка на патент № 21 2006143065/15 (047037) от 06.12. 2006.
  225. Способ синтеза однофазного нанопорошка фторида бария, легированного фторидом редкоземельного металла.
    RU 2411185 от 29.05.09.
  226. Сцинтилляционный материал
    RU2436123 от 12.08.2010.
  227. Сцинтилляционный материал на основе фторида бария и способ его получения
    RU 2462733 с приоритетом от 03.03.2011. 
  228. ТЕПЛОВОЕ РАСШИРЕНИЕ КРИСТАЛЛА InI // Доклады академии наук, 2016, т.469, №5. с.547-549.
    DOI:10.7868/S0869565216230134
  229. Теплопроводность γ-облученных монокристаллов LiF. // Письма в ЖТФ. 2008. Т.34. Вып.16. С.48-52.
    DOI:10.1134/S1063785008080233
  230. Теплопроводность монокристаллов гетеровалентных твердых растворов фторидов иттербия и празеодима во фториде кальция. // Конденсированные среды и межфазные границы

  231. ТЕПЛОПРОВОДНОСТЬ МОНОКРИСТАЛЛОВ ТВЕРДЫХ РАСТВОРОВ СИСТЕМЫ CaF2–SrF2–BaF2–YbF3 НЕОРГАНИЧЕСКИЕ МАТЕРИАЛЫ, 2023, том 59, № 5
    https://doi.org/10.31857/S0002337X23050135
  232. Устойчивость фронта кристаллизации твердого раствора Ca1-xSrxF2  по отношению к концентрационному переохлаждению // Кристаллография. 2018. Т.63. №5, С.820-826.
    DOI:10.1134/S0023476118050107
  233. Фазовые равновесия в системе Ba2Na3[B3O6]2F – BaF2. Кристаллография, 2010. Т.55. №5. С.928-932
    DOI:10.1134/S1063774510050305
  234. Фазовые равновесия в системе BaB2O4-NaF.// Неорган. Матер. 2010. Т.46. №1. С. 77-80

  235. Флюс для кристаллизации эпитаксиальных слоев флюорита и способ получения эпитаксиальных слоев флюорита
    Заявка на патент РФ. Инициировано 13 января 2021 г. Решение о выдаче патента 21.10.2022. RU 2785132 дата отсчета 26.01.2022
  236. Электропроводность фаз на основе сульфата натрия. // Неорг. матер. 2022. Т. 58. № 8. C.836-843. 
    DOI: 10.31857/S0002337X22080115
  237. Эффективная генерация кристаллов твердых растворов CaF2-SrF2:Yb3+ при диодной лазерной накачке. // Квантовая электроника, 2007, т.37, №10. С.934-937.
    DOI: https://doi.org/10.1070/QE2007v037n10ABEH013662